SANDIA REPORT

SAND2004-1592
Unlimited Release
Printed April 2004

MOAB: A MESH-ORIENTED DATABASE

Timothy J. Tautges
Ray Meyers

Karl Merkley

Clint Stimpson
Corey Ernst

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

@ Sandia National Laboratories

Issued by Sandia National Laboratories, operated for tliled)States Department of
Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsoreddneany
of the United States Government. Neither the United Staternment, nor any agency
thereof, nor any of their employees, nor any of theirtiactors, subcontractors, or their
employees, make any warranty, express or implied, or assuy legal liability or
responsibility for the accuracy, completeness, or use&sl of any information,
apparatus, product, or process disclosed, or represent thageitsvould not infringe
privately owned rights. Reference herein to any speaifiornercial product, process, or
service by trade name, trademark, manufacturer, or otherdisss not necessarily
constitute or imply its endorsement, recommendation, \ariiag by the United States
Government, any agency thereof, or any of their contraaorsubcontractors. The
views and opinions expressed herein do not necessarilyostafect those of the United
States Government, any agency thereof, or any of theiractors.

Printed in the United States of America. This report has lveproduced directly from
the best available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865)576-8401
Facsimile: (865)576-5728

E-Mail: reports@adonis.osti.gov
Online ordering:http://www.doe.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800)553-6847
Facsimile: (703)605-6900

E-Mail: orders@ntis.fedworld.gov
Online order: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

Table of Contents

i [01 1o o [§ Tox i [0 o FO PP PRTTTPPUPRP P 5
2. GetliNg STAMEA ..o 5
2.1. Basic Access: Loading a Mesh and Iteratingr@&ements..............cceeeevevvveeiinnnnns 5
2.2. Tags and Sets: Querying Boundary ConditiorssMesh............ccccccvvvvveiiinnennnnn. 6
2.3. Hierarchies of Sets: Traversing Geometric Tagpin a Mesh............................. 6
3. MOAB Data MOGEIcooeiiiiiiieeeeee e eereee e 8
3.1. MOAB INTEITACEeviiiie ettt ees e e e e 8
3.2. Mesh Entities, HaNAIES ... e 8
3.3 . MBRANGE .. 9
I o 1Y =] £ SRR 9
G 78S T =T L PP UPPPPPTRRPPPPRN 9
4. MOAB API Design Philosophy and SUMMArYcvieeiiieiiieeeee e 10
5. Reader/Writer Interface and Other TOOIS...........ccccuviiiiiiiiiiii e 15
5.1. Reader/Writer INterfacecooo oo eeee e 15
5.2. MeSh Readers/WIIEIS ... e e eeeeee e 16
5.3 SKINNEL ...t eerrem et e et s e e e e e e ene e e e s e e e e e e e eaeaeaeararan 16
6. TSTT Mesh Interface Implementation in MOAB aee.vvvvviiiiiiiiieeeeeeceeeeen 17
7. Conclusions and FULUre PIAaNSccueeeeeeeermmmmmmmmmieeeieierrreeseeeeeeeeessessanseeeeees 17
8. REIBIBNCES ...ttt ettt e e e e e eees bbbt et e e e ees 17
List of Figures
Figure 1: Loading a mesh and iterating over aleBmments.ccccccvvvvvveieeeeieeeeennaad 6.
Figure 2: Get the dirichlet sets, their ids, aneldhtities in each set..............ccevvvieeeee. 7
Figure 3: Traverse geometric topology mesh setgyusiesh set parent/child links. 8

List of Tables
Table 1: Values defined for the MOABCN_EntityTypsuenerated type.cccceeeennnn 9
Table 2: Basic data types and enums defined in MOAB...........cccciiiiiiiieeee, 11
Table 3: Conventional tag names and semanticsateby MOAB. Tags must be
defined by application, but names M dolumn are available as preprocessor-

defined strings with values shown in tHE @IUMN.ocooveeieeeeeeee e 11
Table 4: Constructors, destructors, and other nastifiar creating and destroying

INtEIfACE INSTANCES. ...ciiiiiiiiie e e aeee e e e e e 12
Table 5: Type and id utility fuNCLONS.cccoeiiiiiii e e 12
Table 6: Mesh input/output FUNCLIONS.uiiiiiiiiiiiiiiiiee e 12

Table 7: Geometric dimension functions. The geoimdimension controls how many
coordinates are written or read for a mesh whenimamx topological dimension of

the Mesh iS 1SS than thIEE.oiiii e 12
Table 8: Vertex coordinate fUNCLIONS.ccoumieii e 12
Table 9: Individual element connectivity fUNCLONS.........ccoooeeiiiiiiiiiiii s 13

Table 10: Functions for finding/adding/removingadjncies between entities. These
functions use enumerated values of MBInterface:@Niand

MBInterface::INTERSECT for specifying operation &ccccceevvuvvveeeeeennnnnne 13
Table 11: Functions for getting entities in thesiféice or in meshsets.ccccceeeeeennnn. 13
Table 12: Create, destroy or merge vertices Or @msn...............cevveeiiriiiiiieeeeeennenn. 13
Table 13: Print information about the mesh or dpeentities in the mesh. 14
Table 14: Functions for working with higher-ordégraents.ccccviiiiiin. 4.1
Table 15: Tag fUNCHONS.cooiiiiiiiee e eee e e e e e e e 14
Table 16: MeShset fUNCHONS.ooiiiii e e 14

1. Introduction

A finite element mesh is a used to decompose aimemts domain into a discretized

representation. The finite element method solvB&Ed on this mesh by modeling complex
functions as a set of simple basis functions wibkefiicients at mesh vertices and prescribed
continuity between elements. The mesh is one efftindamental types of data linking the
various tools in the FEA process (mesh generatimalysis, visualization, etc.). Thus, the
representation of mesh data and operations on ttaiaeplay a very important role in FEA-based
simulations.

MOAB is a component for representing and evaluatmggh data. MOAB can store structured
and unstructured mesh, consisting of elements énfithite element “zoo”. The functional
interface to MOAB is simple yet powerful, allowitige representation of many types of metadata
commonly found on the mesh. MOAB is optimized ébficiency in space and time, based on
access to mesh in chunks rather than through shaivientities, while also versatile enough to
support individual entity access.

The MOAB data model consists of a mesh interfacgtaimce, mesh entities (vertices and
elements), sets, and tags. Entities are addréissedyh handles rather than pointers, to allow the
underlying representation of an entity to changeeuit changing the handle to that entity. Sets
are arbitrary groupings of mesh entities and othets. Sets also support parent/child
relationships as a relation distinct from sets aming other sets. The directed-graph provided
by set parent/child relationships is useful for elod topological relations from a geometric
model or other metadata. Tags are named data whictbe assigned to the mesh as a whole,
individual entities, or sets. Tags are a mechamsmttaching data to individual entities and sets
are a mechanism for describing relations betweditie=y the combination of these two
mechanisms is a powerful yet simple interface &presenting metadata or application-specific
data.

For example, sets and tags can be used togethdesitribe geometric topology, boundary
condition, and inter-processor interface groupings mesh.

MOAB is used in several ways in various applicadioMOAB serves as the underlying mesh
data representation in the VERDE mesh verificatiode [6]. MOAB can also be used as a mesh
input mechanism, using mesh readers included wi®AR, or as a translator between mesh
formats, using readers and writers included withABO

The remainder of this report is organized as falovéection 2, “Getting Started”, provides a few
simple examples of using MOAB to perform simplekeasn a mesh. Section 3 discusses the
MOAB data model in more detail, including some atpeof the implementation. Section 4
summarizes the MOAB function API. Section 5 ddsesi some of the tools included with
MOAB, and the implementation of mesh readers/wsifer MOAB. Section 6 contains a brief
description of MOAB'’s relation to the TSTT mesherfaice. Section 7 gives a conclusion and
future plans for MOAB development. Section 8 giveferences cited in this report. A reference
description of the full MOAB API is contained in@&®n 9.

2. Getting Started

This chapter contains several examples of using B@# specific tasks. These examples are
described in pseudo-C++, with some details left foutbrevity. For a more complete set of
examples of using MOAB, see the MBTest.cpp filduded in the MOAB distribution.

2.1. Basic Access: Loading a Mesh and Iterating Over Elements

In the example shown in Figure 1, an instance ofABQGs created and used to load and iterate
over the 3d elements in a mesh. MOAB uses hanoleference entities in the mesh, rather than

pointers to C++ class instances. Lists of handias be stored efficiently using MOAB's
MBRange class, which also provides C++ STL-likections and type definitions for iterating
over the lists. MOAB contains functions for retimgn elements by dimension
(get_entities_by_dimension) as well as by entitypety(TRI, QUAD, etc.) and other
characteristics. See Chapter 4 for a completefigtese functions.

I/ load a mesh from a file

gMB = new MBCore();

MBErrorCode result = gMB->load_mesh(“test.g");

MBRange elems;

/I get the 3d elements and iterate over them

result = gMB->get_entities_by_dimension(0, 3, elems ;

for (MBRange::iterator it = elems.begin(); it != el ems.end(); it++)
MBEntityHandle elem = *it;

.

Figure 1. L oading a mesh and iterating over all 3d elements.

2.2. Tags and Sets: Querying Boundary Conditions in a Mesh

A mesh usually contains information about not ordytices and elements, but also groupings of
those entities to represent material types and damynconditions. There are also many other
kinds of “metadata”, or data about the mesh datand in a typical mesh. In MOAB, sets and
tags are used to represent groups of entities pptication-assigned data on those entities,
respectively. Sets and tags provide a versatilehar@sm for storing and retrieving metadata to
or from a mesh.

Figure 2 shows how to retrieve Dirichlet boundawpdition groups, and the mesh entities in each
of the groups, from a MOAB mesh. First, the tagdia corresponding to the pre-defined name
DIRICHLET_SET_TAG_NAME is found using the tag_get handle function. The sets
containing that tag, and any value for that tag, ratrieved using get_entities_by type_and_tag.
The entities contained in each set are retrievaédguget_entities_by handle, with the “true”
argument indicating that any contained sets shbeldraversed recursively to include non-set
entities in the results.

2.3. Hierarchies of Sets: Traversing Geometric Topology in a Mesh

Data hierarchies appear in many forms in mesh d@me of the most common of these is the
topology of the geometric model used to generateesh. This topology can be represented by
sets of mesh, each corresponding to an entitydrgdometric model, and parent/child relations
between these sets, representing the topology grfaihie geometric model. This example shows
how to use MOAB sets and parent/child relationshygtween them to traverse geometric
topology stored with a mesh. The code for thisgXa is shown in Figure 3. This code assumes

! Other pre-defined tag names in MOAB include NEUMANN_SET_TAG_NAAtE
MATERIAL_SET_TAG_NAME. For a discussion of tag name conventions and preediefiames in
MAOB, see Chapter 4.

that the sets and parent/child relationships remtésy geometric topology are already defined in
a MOAB instancé

MOAB assigns a tag with the name GEOM_DIMENSION_TARME to sets representing
geometric topology, with the tag value indicatirgpdlogical dimension of the corresponding
geometric entity. In Figure 3, after retrievingettag handle and assigning it to geom_tag, the
code iterates over dimensions three to zero. &oh édimension, all sets with geom_tag and a
value equal ta are retrieved using get_entities_by type_and_fageach of those sets (each
representing an entity in a geometric model), theildc sets are retrieved using
get_child_meshsets, and some_operation is perfoonethem. The child sets of a given set
represent the bounding entities in the geometrideho

/I get the material set tag handle
MBTag mtag;
MBErrorCode result = gMB->tag_get_handle(DIRICHLET_ SET_TAG_NAME, mtag);

/I get all the material sets in the mesh

MBRange msets, set_ents;

result = gMB->get_entities_by_type_and_tag(0, MBENT ITYSET, &mtag,
NULL, 1, false, msets);

/I iterate over each set, getting entities and doin g something with them
MBRange::iterator set_it;

for (set_it = msets.begin(); set_it != msets.end(); set_it++)

{

MBEntityHandle this_set = *set_it;

/I get the id for this set

result = gMB->tag_get_data(mtag, &this_set, 1, &s et_id);

/I get the entities in the set, recursively

result = gMB->get_entities_by_handle(this_set, se t_ents, true);
}

Figure2: Get thedirichlet sets, their ids, and the entitiesin each set.

The function get_entities_by type_and_tag is aatdesfunction which not only returns entities
with given tags and values, but can also perfortrbseleans on the result (controlled by the
MBiInterface::UNION argument) and traverse recurgivelown through contained sets
(controlled by the “false” argument). See Chagtéor a complete description of this function.

Note that this example shows how geometric topology be queried through sets of mesh,
without the use of a geometric modeling engine. It also shows that the semantic meaning of
classifying entities in the mesh to a piece of gewim topology can be accomplished using mesh
sets and tags provided by MOAB

2 One way to retrieve mesh data with these definitions is to use MO2BBsfile reader, which is
described in Section 5.2.

% The final step in associating a mesh set of a specific topological danénsViOAB with an actual entity
in a geometric modeling engine, if desired, can be done using another tageecgntaining a unique
integer id or a character name corresponding to that entity. Thisrigethed used to do this association
between entities in MOAB and CGM, for example.

/I get the geometric topology tag handle

MBTag geom_tag;

MBErrorCode result;

result = gMB->tag_get_handle(GEOM_DIMENSION_TAG_NAM E, geom_tag);

/I traverse the model, from dimension 3 downward
MBRange psets, chsets;
int dim;
int *dim_ptr = &dim;
for (dim = 3; dim >= 0; dim--)
{
Il get parents at this dimension
psets.clear();

result = gMB->get_entities_by_type_and_tag(0, MBE NTITYSET,
&geom_tag, dim_ptr, 1, false, psets, MBinterfac e::UNION, false);

I for each parent, get children and do something with them

MBRange::iterator par_it;

for (par_it = psets.begin(); par_it != psets.end(); par_it++)

/Il get the children and put in child set list

chsets.clear();

result = gMB->get_child_meshsets(*par_it, chset s);
/I do something with them

some_operation(chsets);

};/ for (intdim = ...)

Figure 3: Traverse geometric topology mesh sets using mesh set parent/child links.

3. MOAB Data Model

The MOAB data model is an important part of underding how best to use MOAB in
applications. This chapter describes that dataetpnatbng with some of the reasons for some of
the design choices in MOAB.

3.1. MOAB Interface

A mesh is accessed in MOAB through functions defime the MOAB interface instance.
Handles to mesh entities are guaranteed to be emagghin an interface instance. The MOAB
implementation allows an application to gain acdesthe instance by using C++ instantiation,
using a component interface called SIDL, or throagthared library. Instantiation is shown in
the examples in Chapter 2. Accessing MOAB thro8¢BL is discussed briefly in Chapter 6,
and is demonstrated in test code distributed witbAB. Access through shared libraries is
demonstrated in the MBTest.cpp example, distributitd MOAB.

3.2. Mesh Entities, Handles

The type of a mesh entity in MOAB is representedh®y MBEnNtityType enumerated type. The
mesh entity types defined in MOAB are listed in [Eab. Note that the types begin with vertex,
entity types are grouped by topological dimensamyg the definition includes an entity type for
sets. MBMAXTYPE is included for convenience, tadicate the maximum value of this

enumeration. In addition to the defined valueshef MBEntityType enumeration, an increment
operator (++) is defined such that variables ofetygBEntityType can be used as iterators in
loops.

MOAB uses handles to mesh entities, rather thantp. Handles are implemented as integer
data types, with the four highest-order bits usedtore the entity type (mesh vertex, edge, tri,
etc.) and the remaining bits storing the entity iBecause the entity types are defined in the
MBEnNtityType enum by topological dimension and tyee is stored in the higher order bits of a
handle, handles naturally sort by type and dimensidhis can be useful for grouping and
iterating over entities by type. This characteristf the handle implementation is exposed to
applications intentionally, because of optimizasidhat it enables in application code. This is
used extensively in the implementation of MOAB, asdherefore unlikely to change in future
modifications to MOAB.

Table 1: Valuesdefined for the MOABCN_EntityType enumerated type.

MBVERTEX =0 MBPRISM
MBEDGE MBKNIFE

MBTRI MBHEX

MBQUAD MBPOLYHEDRON
MBPOLYGON MBENTITYSET
MBTET MBMAXTYPE
MBPYRAMID

3.3. MBRange

MOAB defines the MBRange class to represent setenfiguous ranges of handles. This allows
the representation of an arbitrary number of handiea near-constant-size class. Iterators are
defined for MBRange such that they can be used nthelsame as C++ STL container classes.
Putting entities in a range automatically sortsnthiey type and dimension, because of the
ordering characteristic of entity handles. MBRasbeuld be used whenever possible, to avoid
creating large lists of entity handles; rangesadge more computationally efficient for many list-
type operations.

3.4. Entity Sets
Entity sets are used to represent arbitrary gr@gf entities in MOAB. Entity sets can be
defined with several options:

* Ordered: entity order is preserved in this set

» Set: entities can only appear once in this set

» Tracking: membership in this set is tracked ontrsti

Entity sets can also be related together usingnpateld relationships (these relationships are
distinct from sets containing other sets). Tagslmassigned to entity sets as well. Using sets i
conjunction with parent/child relationships andstag a powerful mechanism for representing
metadata on a mesh. This mechanism has been aigegpresent geometric model topology,
inter-processor interfaces, and boundary condgiaupings on a mesh, for example.

3.5. Tags

A tag is an application-specific piece of data g#sidl to an entity, an entity set, or the mesh
interface itself. Tags are uniquely identified &yame, but are referenced using a handle for
efficiency. Currently, MOAB treats the value otay as raw data; that is, MOAB understands

4 The term “mesh sets” is also used to refer to entity sets in variacespl

nothing about the semantic type of tag data, elgther it is an integer, a C structure, etc. Each
MOAB tag has the following characteristics, whi@nde queried through the MOAB interface:

* Name
» Size (in bytes)
* Type (mesh, dense, sparse, bit)
 Handle
The type of the tag determines how tags are stumezhtities.

* Mesh: Mesh tags are assigned to the mesh inteafaaewhole.

* Dense: Dense tags are stored like arrays of esjtitigh each entity having a
separate value for a given dense tag. Dense taga@e efficient in both storage
and memory if large numbers of entities are assighe same tag type.

» Sparse: Sparse tags are stored in list fashiomenfeatity handle, tag value) pairs
are stored in a list for a given tag.

* Bit: Bit tags are handled distinctly from sparsgstbecause the size is measured
in bits rather than bytes; bit tags can be useditomize storage costs for
boolean-valued data.

The meaning of a given tag is left to applicatibmsletermine, in order to avoid having to change
the MOAB API every time a new tag is required. Hwer, there are a number of tag names
reserved by MOAB which are intended to be useddywention. At this time, MOAB defines
the tags in Table 3 as having conventional semantMesh readers and writers in MOAB use
these tag conventions, and applications can use &lsewell to access the same data.

4. MOAB API Design Philosophy and Summary

This section summarizes the API functions providgdMOAB, and some of the data types and
enumerated variables referenced by those functiénsomplete description of the MOAB APl is
listed in Chapter 9, and is available in onlinewaentation in the MOAB distribution.

The MOAB API was designed to both minimize the nembf functions for simplicity and
maximize the efficiency of both the implementatérd use of the API functions, without making
the individual functions too complex. Since thasgectives are at odds with each other,
tradeoffs had to be made between them. Some &pissifies that came up are:

» Usingranges. Where possible, entities can be referenced usihgreanges
(which allow efficient storage of long lists) oraters (which allow list order to
be preserved), in both input and output arguments.

* Entitiesin sets: Accessing the entities in a set is done using#me functions
which access entities in the entire mesh. The avhw@dsh is referenced by
specifying a set handle of zero (e.g. see codedriitst example of Chapter 2).

* Entity vectorson input: Functions which could normally take a single grdis
input are specified to take a vector of handletesd. Single entities are
specified by taking the address of that entity eaad specifying a list length of
one (for example, see Figure 2 in Chapter 2). WwhEmizes the number of
functions, while preserving the ability to inputgie entities.

®> Note that STL vectors of entity handles can be input in this manner by&sintpr[0] and vector.size()
for the 1d vector address and size, respectively.

10

Table 2 lists basic data types and enumeratedblasialefined and used by MOAB. Values of
the MBErrorCode enumeration are returned from nWBAB functions, and can be compared to
those listed in the online documentation for MOAB[8

Table 3 shows conventional tag names and semdbticseveral tags. As described in Section
3.5, these tag names are understood by conveltidrare not explicitly bound to the MOAB
interface.

The remaining tables in this chapter, Table 4 thhotiable 16, enumerate the other functions in
the MOAB interface, grouped by types of functiohali See Chapter 2 for several simple
examples of using the MOAB interface for variousgle operations on a mesh. Online
documentation for MOAB should be consulted for ctete and latest documentation of these
functions [8].

Table 2: Basic data types and enums defined in M OAB.

Enum/ Type Description

MBErrorCode Specific error codes returned from MOAB
MBEntityHandle Type used to represent entity hasidle
MBTagType Type used to represent tag type

MBTag Type used to represent tag handles

Table 3: Conventional tag names and semantics defined by MOAB. Tags must be defined by
application, but namesin 1% column are available as preprocessor -defined strings with values shown
in the 2" column.

#define name String name Description (type)

MATERIAL_SET_TAG_NAME “MATERIAL_SET” Material idenifier
(int)

DIRICHLET_SET_TAG_NAME “DIRICHLET_SET” Dirichlet-tpe BC

identifier, normally
composed of vertices
only (int)

NEUMANN_SET_TAG_NAME “NEUMANN_SET” Neumann-type BC
identifier, normally
composed of “sides’
of higher-
dimensional
elements (int)

HAS_MID_NODES_TAG_NAME “HAS_MID_NODES” Flag denotin

elements having
mid-nodes on edges,
faces, and regions

(int[3])

GEOM_DIMENSION_TAG_NAME | “GEOM_DIMENSION” | Presencd tag
indicates this set
represents an entity
of geometric
topology; value

11

#define name

String name

Description (type)

indicates topological
dimension (int)

MESH_TRANSFORM_TAG_NAME

‘“MESH_TRANSFORM”

Transform applied ta
mesh, specified in
4x4 homogeneous
transform
(double[16])

GLOBAL_ID_TAG_NAME

‘GLOBAL_ID”

Global id (int)

Table 4. Constructors, destructors, and other methods for creating and destroying interface

instances.

Function Description
MBInterface, MBCore Constructors
~MBiInterface, ~MBCore Destructors

query_interface

Find an interface with the spedifiame.

release_interface

Release the interface with theispd name.

Table5: Typeand

id utility functions.

Function

Description

type_from_handle

Return the MBEntityType of a giwariity

id_from_handle

Return the entity id of a given gnti

dimension_from_handle

Return the topological dinmmsf a given entity

handle_from_id

any

Return the entity correspondinghdiven type and id, if

Table 6: M esh input/output functions.

Function Description

load_mesh Load the mesh from the specified file.

write_mesh Write the mesh to the specified file,dpecified material sets or for th
whole mesh.

(D

Table 7. Geometric dimension functions. The geometric dimension controls how many coordinates
arewritten or read for a mesh when maximum topological dimension of the mesh islessthan three.

Function

Description

get_dimension

Gets the geometric dimension seh@miesh

set_dimension

Sets the geometric dimension on #shm

Table 8: Vertex coordinate functions.

Function

Description

get_vertex_coordinate

Get the coordinates of all vertices in the mesh

12

get_coords Get the coordinates of entities specified in thputrrange

set_coords Set the coordinates of vertices spddifi¢he input vector

Table9: Individual element connectivity functions.

Function Description

get_connectivity by type Get the connectivity fbreatities of the specified type
get_connectivity Get the connectivity for a list of elements
set_connectivity Set the connectivity for the inpatity

Table 10: Functionsfor finding/adding/removing adjacencies between entities. These functionsuse
enumerated values of MBlnterface::UNION and MBlInterface::INTERSECT for specifying

operation types.

Function Description

get_adjacenciés Get the adjacencies associated with a list ofieatib entities
of a specfied dimension.

add_adjacencies Add adjacencies between "from™tafientities

remove_adjacencies Remove adjacencies betweenelsand|

Table 11: Functionsfor getting entitiesin theinterface or in meshsets.

Function

Description

get_entities_by dimension

Retrieves all entitiea gfven topological
dimension in the database or meshset

get_entities_by type

Retrieve all entities of aegitype in the
database or meshset

get_entities_by type_and_tag

Retrieve entitiebéndatabase or meshset
which have any or all of the tag(s) and
(optionally)

/' value(s) specified

get_entities_by_handle

Returns all entities in the data base or meshset

get_number_entities_by_dimension

Return the numbentities of given
dimension in the database or meshset

get_number_entities_by type_and_

ldgetrieve number of entities in the database of
meshset which have any or all of the
/' tag(s) and (optionally) value(s) spedifie

get_number_entities_by handle

Returns number dfeenin the data base or
meshset

Table 12: Create, destroy or merge verticesor elements.

Function | Description

* Multiple versions of this function are available, and differ acogydid how arguments are specified or
returned (by range, STL vector, etc.). See online documentatidor 8]l documentation.

13

create_element

Create an element based on thamgbeonnectivity

create_vertex

Creates a vertex with the specifoeidinates

merge_entities

Merge two entities into a singletgnt

delete_entitie’s

Remove entities from the data base

delete_mesh

Deletes all mesh entities from thisiliBance

Table 13: Print information about the mesh or specific entitiesin the mesh.

Function

Description

list_entities

List specified entities to standard output

get_last_error

Get a string describing the lagirarr MOAB

Table 14: Functionsfor working with higher-order elements.

Function

Description

HONodeAddedRemoved

Function object to communicigleen order node
added/removed events from MOAB to applications

convert_entities

Convert entities to higher-ordements by adding or
removing mid nodes

side_number

Returns the side number, in canonidalrimg, of child
entity with respect to parent entity

high_order_node

Find the higher-order node on afacét of an entity

side_element

Return the handle of the side eleofemgiven dimension
and index

Table 15: Tagfunctions.

Function

Description

tag_create

Create a tag with the specified narpe, and length

tag_get _name

Get the name of a tag correspondiadgpamdle

tag_get handle

Get the tag handle correspondiaghtime

tag_get size

Get the size of the specified tag

tag_get type

Get the type of the specified tag

tag_get tags

Get handles for all tags definedemtlash instance

tag_get dafa

Get the value of the indicated tag on the spec#igtities

tag_set_dafa

Set the value of the indicated tag on the specdidities

tag_delete_data

Delete the data of a sparse tag from the speaintities

tag_delete

Remove a tag from the database anc @@l its associateg
data

Table 16: M eshset functions.

Function

Description

create_meshset

Create a set

clear_meshsét

Clean out specified sets

get_meshset_options

Get the options of a set

14

subtract_meshset Subtract meshset2 from meshswidifies meshsetl

intersect_meshset Intersect meshset2 with meshsaailifies meshsetl

unite_meshset Unite meshset2 with meshsetl - nesdifieshsetl

add_entities Add entities to a set

remove_entitie's Remove entities from a set

get_parent_meshsets Get parent sets

get_child_meshsets Get child sets

num_parent_meshsets Get the number of parent sets

num_child_meshsets Get number of child sets

add_parent_meshset Add a parent set

add_child_meshset Add a child set

add_parent_child Add ‘parent' to child's parentdisd adds ‘child’ to parent's
child list

remove_parent_child Remove 'parent’ to child'smdrgt and remove ‘child’ to
parent's child list

remove_parent_meshseét Remove parent set

remove_child_meshset| Remove child set

5. Reader/Writer Interface and Other Tools
MOAB is a library and API for representing meshadaHowever, in the course of developing

MOAB, several other tools and capabilities havenbdeveloped, either to facilitate getting data
into MOAB, or for other reasons. These tools agcdbed in this chapter.

5.1. Reader/Writer Interface

Mesh readers and writers communicate mesh intabMOAB from/to disk files. Reading a
mesh often involves importing large sets of daba,eixample coordinates of all the nodes in the
mesh. Normally, this process would involve readdaja from the file into a temporary data
buffer, then copying data from there into its desion in MOAB. To avoid the expense of
copying data, MOAB has implemented a reader/wiitégrface that provides direct access to
blocks of memory used to represent mesh. Thigfatte is abstracted similar to the MOAB
interface, to allow any mesh reader/writer to Wise i

The reader interface, declared in MBReadUtillfaseused to request blocks of memory for
storing coordinate positions and element connéygtivi he pointers returned from these functions
point to the actual memory used to represent thdase in MOAB. Once data is written to that
memory, no further copying is done. This not osdyes time, but it also eliminates the need to
allocate a large memory buffer for intermediaterasje of these data. The reader interface
consists of the following functions:

* get_node arrays. Given the number of vertices requested, the nummber
geometric dimensions, and a requested start m;atks a block of vertex handles
and returns pointers to coordinate arrays in mepalong with the actual start id
for that block of vertices.

» get_element_array: Given the number of elements requested, the nuatber
vertices per element, the element type and theestgd start id, allocates the
block of elements, and returns a pointer to thenectivity array for those
elements and the actual start handle for that blddte number of vertices per

15

element is necessary because those elements nhageogher-order nodes, and
MOAB stores these as part of the normal connegtasitay.
» update adjacencies. This function takes the start handle for a blotklements

and the connectivity of those elements, and updatgsencies for those

elements. Which adjacencies are updated depenitie @ptions set in

AEntityFactory.
The writer interface, declared in MBWriteUtillfacekes pointers to storage locations for node
and element data and assembles and writes thaséoddiat memory. Assembling these data is a
common task for writing mesh, and can be non-triviben exporting only subsets of a mesh.
The writer interface declares the following funato

* get_node arrays. Given already-allocated memory and the numbeedices
and dimensions, and a range of vertices, this fometrites vertex coordinates to
that memory. If a tag is input, that tag is algdtten with integer vertex ids,
starting with 1, corresponding to the order thdiges appear in that sequence
(these ids are used to write the connectivity grray

* get_element_array: Given a range of elements and the tag holdingexeds,
and a pointer to memory, the connectivity of thecsited elements are written to
that memory, in terms of the ids referenced bysghexified tag. Again, the
number of vertices per element is input, to allbe direct output of higher-order
vertices.

» gather_nodes from_elements. Given a range of elements, this function returns
the range of vertices used by those elementsbilfigpe tag is input, vertices
returned are also marked with Ox1 using that tHge implementation of this
function uses its own bit tag for marking, to avaiing an Aalgorithm for
gathering vertices.

5.2. Mesh Readers/Writers

MOAB has been designed to efficiently representa datd metadata commonly found in finite
element mesh files. Readers and writers are irdwdth MOAB which import/export specific
types of metadata in terms of MOAB sets and tagisleacribed earlier in this document. Current
readers (R) and writers (W) in MOAB include:

* Exodusll: Common simulation data format used at&efi]. (R, W)

* Cub: The file used to save Cubit session datayded mesh and solid model
data. Mesh data imported directly; solid modebhdaged to construct geometric
topology groupings in MOAB. (R)

* Vtk: Open-source graphics package which also defandata format. (R)

Because of its generic support for readers andcesgtidescribed in the previous section, MOAB
is also a good environment for constructing newhmesders and writers. Additional readers
and writers will be added to MOAB in the futurejesenline documentation for MOAB for
details.

5.3. Skinner

An operation commonly applied to mesh is to compilte outermost “skin” bounding a
contiguous block of elements. This skin consistslements of one fewer topological dimension,
arranged in one or more topological spheres ottlmdary of the elements. MOAB provides a
tool, MBSkinner, to compute the skin of a mesh memory-efficient manner. MBSkinner uses

16

special MOAB functionality to minimize the verteaege adjacencies required to compute the
skin. This process also reduces the searchingréoqugred to find faces on the skin.

MBSkinner can also skin a mesh based on geomep@dgy groupings imported with the mesh.
The geometric topology groupings contain informatabout the mesh “owned” by each of the
entities in the geometric model, e.g. the modelices, edges, etc. Links between the mesh sets
corresponding to those entities can be inferreglctliy from the mesh. Skinning a mesh this way
will typically be much faster than doing so on #etual mesh elements, because there is no need
to create and destroy interior faces on the mesh.

6. TSTT Mesh Interface Implementation in MOAB

The DOE Scientific Discovery for Advanced Computi(§ciDAC) program has funded the

Terascale Simulation Tools and Technologies (TS3éljter to develop interoperable interfaces
and tools applied to meshing and other enablingniglogies [2]. Applications which operate on
mesh through the TSTT mesh interface specificatan use a number of packages for
representing that mesh. Applications providingiraplementation of the TSTT mesh interface
can use tools which communicate with mesh throdngth interface, including the FRONTIER

interface modeling library [3] and the MESQUITE thésyprovement toolkit [4].

The TSTT mesh interface specification uses the @8Bhel tools [5] to provide inter-language
interoperability. Applications linked to a frameswothrough SIDL/Babel can use run-time
binding to gain access to components that, for @kanmplement the TSTT mesh interface.

Studies are underway to examine the run-time doatcessing MOAB and other mesh interface
implementations through SIDL/Babel. Early predimas are that the cost should be similar to
several normal function calls in the native progmang language.

Further details of accessing MOAB and other impletatons of the TSTT mesh interface
through SIDL/Babel will be described as they becavailable.

7. Conclusions and Future Plans

MOAB, a Mesh-Oriented datABase, provides a simpiegowerful data abstraction to structured
and unstructured mesh, and makes that abstract@mitalble through a function APl. MOAB
provides the mesh representation for the VERDE mesiffication tool, which demonstrates
some of the powerful mesh metadata representatipabdlities in MOAB. MOAB includes
modules that import mesh in the Exodusll, CUBITbh.and Vtk file formats, as well as the
capability to write mesh to Exodusll, all withoutdnsing restrictions normally found in
Exodusll-based applications. MOAB also has theabdjy to represent and query structured
mesh in a way that optimizes storage space usimgdhametric space of a structured mesh; see
Ref. [7] for details.

Initial results have demonstrated that the dat&ratison provided by MOAB is powerful enough
to represent many different kinds of mesh data dounreal applications, including geometric
topology groupings and relations, boundary conditiwoupings, and inter-processor interface
representation. Our future plans are to furthgame how these abstractions can be used in the
design through analysis process.

8. References

[1] Larry A. Schoof, Victor R. Yarberry, “EXODUS II: Kinite Element Data Model”,
SAND92-2137, Sandia National Laboratories, Albuquer NM, September 1994,
http://endo.sandia.gov/SEACAS/Documentation/exdduc.

[2] The Terascale Simulation Tools and Technology (T)SId@nter http://www.tstt-scidac.org/

17

[3]
[4]

[5]
[6]

[7]

[8]

18

Frontier front tracking codénttp://galaxy.ams.sunysb.edu/frontiercalc2/tstt/

M. Brewer, L. Diachin, P. Knupp, T. Leurent, D. MeHer, “The Mesquite Mesh Quality
Improvement Toolkit”, Proceedings, 12th Internatibihleshing Roundtable, Sandia National
Laboratories report SAND 2003-3030P, Sept. 2003.
Babel,http://www.lInl.gov/CASC/components/babel.html

The Verde (Verification of Discrete Elements) tool,
http://fendo.sandia.gov/cubit/verde_release 2.5b.txt

Timothy J. Tautges, “MOAB-SD: Integrated Structuremnd Unstructured Mesh
Representation”, Engineering With Computers, toeapp

MOAB Online documentation, http://cubit.sandia.dd@AB.html.

