
U-splines: splines over unstructured meshes
Derek C. Thomas1, Luke Engvall1, Steven K. Schmidt2, Kevin Tew1, and

Michael A. Scott2

1Coreform LLC, Orem, Utah, USA
2Department of Civil and Environmental Engineering, Brigham Young University, Provo, UT,

USA

November 7, 2022

U-splines are a novel approach to the construction of a spline basis for representing smooth objects in
Computer-Aided Design (CAD) and Computer-Aided Engineering (CAE). A spline is a piecewise-defined
function that satisfies continuity constraints between adjacent cells in a mesh. U-splines differ from existing
spline constructions, such as Non-Uniform Rational B-splines (NURBS), subdivision surfaces, T-splines,
and hierarchical B-splines, in that they can accommodate local variation in cell size, polynomial degree,
and smoothness simultaneously over more varied mesh configurations. Mixed cell types (e.g., triangle and
quadrilateral cells in the same mesh) and T-junctions are also supported, although the continuity of interfaces
with triangle and tetrahedral cells is limited in the present work. The U-spline algorithm introduces a new
technique for using local null space solutions to construct basis functions for the global spline null space
problem. The U-spline construction is presented for curves, surfaces, and volumes with higher dimensional
generalizations possible. A set of requirements are given to ensure that the U-spline basis is positive, forms a
partition of unity, is complete, and is locally linearly independent.

Contents
1 Introduction 4

1.1 Previous work . 4
1.2 Current work and key contributions . 5
1.3 Organization of paper . 7

2 The Bernstein polynomials 8
2.1 Ordering of derivatives . 8
2.2 Degree elevation . 8
2.3 Multivariate Bernstein polynomials . 8

2.3.1 Box . 9
2.3.2 Simplicial . 9
2.3.3 Tensor-product hybrid . 10

2.4 Bernstein-like bases . 10

3 The Bézier mesh 10
3.1 Topology . 10

3.1.1 Adjacencies . 11
3.1.2 k-cell types . 11

3.2 Cell domains and parameterization . 11
3.3 Cell space and degree . 12
3.4 Interface continuity . 13

3.4.1 Supersmooth interfaces . 14

1

4 Bernstein representations 14
4.1 Indexing . 15
4.2 Bernstein form . 15
4.3 The trace mapping matrix . 16

5 Continuity constraints 16
5.1 Constraint sets . 17
5.2 Constraint matrices . 17
5.3 Constraint construction . 17

6 Splines and the nullspace problem 18
6.1 Basis vectors . 18
6.2 Basis functions . 18
6.3 Spline form . 18
6.4 Extracted form . 19

7 Bernstein basis metrics and index measurements 19
7.1 Greville points . 19
7.2 Submesh domains . 20

7.2.1 Indexed submesh domains . 20
7.3 Equivalence relations and classes . 21
7.4 Alignment . 22

7.4.1 Alignment in two dimensions . 22
7.4.2 Alignment in arbitrary dimensions . 23

8 Basis vectors for k-cell nullspaces 25
8.1 Basis vectors in one dimension . 25
8.2 Interface basis vectors in two dimensions . 26
8.3 k-cell basis vector preliminaries . 27

8.3.1 Spokes and interface-element pairs . 28
8.3.2 Inclusion distances . 28
8.3.3 Alignment sets . 29

8.4 Overview of k-cell basis vector construction . 29
8.5 Vertex basis vectors in two dimensions . 30

8.5.1 Composite vertex basis vectors . 30
8.5.2 Simple vertex basis vectors . 31
8.5.3 The full set of vertex basis vectors . 31

8.6 Subordinate basis vectors . 34
8.7 Basis vector boundaries . 35

8.7.1 Basis vector boundaries in one dimension . 35
8.7.2 Basis vector boundaries in two dimensions . 35
8.7.3 Basis vector boundaries in arbitrary dimensions . 36

9 The U-spline mesh 37
9.1 Ribbons . 38

9.1.1 Maximum coupling length . 38
9.1.2 Continuity transitions . 39
9.1.3 Degree transitions . 39

9.2 Admissible layouts . 40
9.3 Classification . 41

2

10 The U-spline basis 46
10.1 The core graph . 46

10.1.1 Cores . 46
10.1.2 Expansion edges . 46
10.1.3 Algorithm . 47

10.2 The rank one null space problem . 48
10.3 Normalization . 49

11 The U-spline space 50
11.1 Completeness and the neighborhood of interaction . 50
11.2 Mathematical properties . 50
11.3 Numerical verification . 51

11.3.1 Overview of verification procedure . 52

12 Notable U-spline examples 53
12.1 Supersmooth interfaces . 53
12.2 Degree transitions . 54
12.3 Extraordinary vertices . 55
12.4 Triangles . 56
12.5 Unstructured volumetric U-splines . 57

13 Conclusion 59

14 Acknowledgements 59

A A gentle introduction to U-splines 60
A.1 Building intuition: Constraints . 60
A.2 Building intuition: Splines . 63
A.3 Building intuition: Basis vectors . 65
A.4 Building intuition: The U-spline mesh . 71
A.5 Building intuition: The U-spline basis . 72

B Interface continuity constraints in two dimensions 74
B.1 Quadrilateral-quadrilateral interface . 75
B.2 Quadrilateral-triangle interface . 76
B.3 Triangle-triangle interface . 77

C Basis vectors in arbitrary dimensions 78
C.1 Composite k-cell basis vectors . 78
C.2 Simple k-cell basis vectors . 79
C.3 The full set of k-cell basis vectors . 79

D Ribbon processing 79

E U-spline test cases with Bézier extraction coefficients 82
E.1 U-spline extraction coefficients near a supersmooth interface 82
E.2 U-spline extraction coefficients with non-rectangular support 83
E.3 U-spline extraction coefficients on mesh equivalent to analysis-suitable T-spline with non-

crossing edge extensions . 85
E.4 U-spline extraction coefficients near an extraordinary vertex 87
E.5 U-spline extraction coefficients near a triangle . 88

3

1 Introduction
Computer aided engineering (CAE) can provide feedback regarding the expected behavior of a given part
before costly fabrication is undertaken. The predominant simulation technique in current use in CAE is finite
element analysis (FEA). In FEA, the simulation of a computer aided design (CAD) is typically preceded by a
process known as meshing, in which a faceted approximation of the original CAD model is constructed to
satisfy the requirements of the simulation pipeline. Inconsistencies in common industrial CAD representations,
such as small gaps between adjacent CAD faces, must be resolved during the meshing process resulting in a
final mesh approximation that is referred to as “watertight” or “analysis-suitable”.

A faceted mesh is a piecewise-defined function that satisfies continuity constraints between adjacent cells.
The function, restricted to the domain of each cell, is a linear polynomial or facet. Across interfaces, or the
boundary of adjacent cells, the function is C0-continuous. Continuity or smoothness refers to the level at
which a function shares the same values on either side of an interface. If the function is discontinuous at
the interface then the function can have different values at adjacent points in the cells on either side of the
interface. A function is said to be value continuous if the function produces the same value at points in each
cell that are adjacent across the interface. Other levels of continuity are also possible; the slope and curvature
of the function can also be continuous across the interface. Higher levels of continuity require mathematical
definitions in terms of derivatives. We say a function has continuity of order ϑ where ϑ ≥ −1; we also say a
function is Cϑ-continuous. C−1 is discontinuous, C0 is value continuous, etc.

While it is technically correct to call a faceted mesh a spline, the term spline has become synonymous with
meshes of higher degree and continuity. We will often use the term smooth spline to disambiguate the term.
The most recognized example of a smooth spline is the B-splines or basis splines. Originating with Cox, de
Boor, and Mansfield, the basis spline functions are the minimally supported spline functions on a partitioning
of an interval. The minimal, compact support of B-splines is significant for both design and simulation.

The simplicity and efficiency of prevailing smooth spline constructions, their superior approximation
properties, and numerical robustness have led to the widespread industrial adoption of smooth splines as
the foundation of modern CAD tools. Indeed, nonuniform rational B-splines (NURBS), a generalization of
B-splines, are foundational to virtually all CAD modeling environments, where they are used primarily for
non-analytic curve and surface representation.

Interestingly, the superior behavior of smooth splines, when applied to FEA has long been recognized
by analysts [62]. However, most splines, other than simple C0 splines, were viewed as too expensive or the
construction too complex for general-purpose FEA. Efforts were made to improve the geometric definition in
FEA through the use of subdivision surfaces [10] and NURBS in FEA [24], among others, but it was not
until the introduction of the concept of isogeometric analysis (IGA) [26] that a large-scale effort to exploit the
properties of splines in FEA commenced. IGA can be understood simply to be FEA with smooth splines.
The potential benefits of this approach have become clear [14, 21, 41], but the watertight meshing of complex
CAD geometries with smooth splines remains a significant barrier to broader adoption.

Our opinion is that a smooth spline meshing technology for industrial-scale FEA problems should be
capable of smoothly and accurately representing complex CAD models, be compatible with prevailing industrial
spline representations such as NURBS and T-splines, support the local modification of cell size (h-refinement),
degree (p-refinement), and intercell continuity (ϑ-refinement), naturally generalize to higher dimensions, and
provide a locally-supported, complete, positive basis for the underlying spline space that forms a partition of
unity and is (locally) linearly independent. The U-spline technology satisfies all these technical objectives.

1.1 Previous work
The need for advanced smooth spline surface meshes in CAD and, in particular, animation and graphics
applications, led to the development of both subdivision surfaces [46] and later T-splines [55]. A significant
benefit of the T-spline construction is its compatibility with NURBS representations. Additional developments
to follow on the advances of subdivision surfaces and T-splines include PHT-splines [16] and polynomial
splines over T-meshes [34]. In these works, the continuity of the splines is restricted to be less than half of the
polynomial degrees on adjacent cells. The importance of handling singular or extraordinary vertices smoothly
has long been recognized and many approaches have been proposed [49, 44, 63].

The potential benefits of smooth unstructured spline meshes was recognized soon after the advent of

4

FEA [4]. Despite these early efforts, the majority of finite element research was carried out on C0 constructions
and so FEA came to be associated primarily with C0 basis functions. More recently, subdivision surfaces
were applied to shells [10]. Shortly after the original introduction of IGA [26], work commenced on IGA
based on T-splines [6]. This was motivated by both the unstructured nature of T-splines and the need for
adaptive local refinement. The need for guarantees on analysis properties of the basis led to the introduction
of analysis-suitable T-splines (ASTS) [32]. Other efforts to produce refineable splines suitable for use in
FEA followed such as locally refined (LR) B-splines [17] and hierarchical B-splines and truncated hierarchical
B-splines [22, 52]. Constructions based on geometric rather than parametric continuity have also been
explored [23, 30].

There has also been significant work on spline constructions over unstructured meshes within the wider
numerical analysis community, although many of these approaches have not been widely adopted in FEA.
Classic approaches commonly employed to produce continuity greater than C0 include Arqyris elements [4],
Clough-Tocher elements [3], and Powell-Sabin splines [59, 60] among others. Significant work has been carried
out on the dimension of spline spaces for both triangle [2, 31] and T-meshes [33, 34]. Meshes consisting of
both squares and triangles with potentially hanging vertices, also called T-junctions, have been considered [51]
although only splines of continuity C0 were explored. The approximation power of splines over T-meshes for
splines of reduced continuity greater than C0 has been established [51]. Several types of simplex splines have
been introduced to facilitate the construction of splines in unstructured settings [43]. Several adaptations
of simplex splines to Powell-Sabin and other splits have been proposed to allow their use on unstructured
meshes [11, 38, 61]. Additional methods combine the solution of continuity constraints together with the
solution of the governing PDEs [5, 25, 50]. Splines based on both triangles [28, 45, 69] and tetrahedra [68]
have been employed in IGA.

Practical constructions of mixed degree or multi-degree smooth splines are currently limited to univariate
constructions and their tensor products and consequently have not seen extensive use in FEA although basic
constructions are used in C0 hp-adaptive methods [15]. In CAGD, univariate mixed degree or multi-degree
splines have been proposed [56, 57, 65]. We should mention that multivariate multi-degree splines with higher
continuity have been constructed on triangulations without a basis for the purpose of numerical analysis [25].

While B-splines, due to their tensor product structure, naturally generalize to arbitrary dimensions, it
remains a challenge to generalize less structured splines to higher dimensions. Initial efforts have been made to
parameterize an irregular volume with a collection of one or more tensor product or swept volumetric B-splines
or NURBS (sometimes called a multi-patch construction) [39, 1, 71, 70, 67]. T-splines have been primarily
used in two-dimensional surface applications, but modest efforts to expand T-splines to the volumetric regime
have been made, building on top of the multi-patch approach used with B-splines and NURBS [18, 19, 72, 66,
37, 36, 42]. The volumetric constructions have not yet seen widespread industrial adoption.

Each of these prior technologies have provided important advances and served to demonstrate the power and
utility of splines in a wide array of applications, including FEA. However, each method also has known technical
limitations in the level of smoothness permitted, maximum dimension, the placement of local refinement
features, the polynomial degree supported, or the mathematical quality of the resulting basis functions.
The U-spline algorithm presented here represents a fundamentally different method for understanding and
constructing splines from any previous work and overcomes many of these limitations.

1.2 Current work and key contributions
A spline space can be constructed directly from a mesh and assigned smoothness constraints, usually through
the construction and analysis of an associated global smoothness constraint matrix. Various approaches to
accomplish this have been proposed but we mention, in particular, the approach based on minimal determining
sets [2] as it most closely relates to the U-spline algorithm described in this work. Finding a minimal
determining set corresponds to finding a basis of the appropriate size for the spline space. Unfortunately, this
approach does not provide any insight into the quality or utility of a basis other than existence and quickly
becomes intractable for meshes of even moderate size; accurate determination of even the rank of a large
constraint matrix of floating point numbers is a difficult problem.

Of more practical use is an algorithm for the direct construction of a spline basis from a mesh that
satisfies the desirable properties of the B-splines: (local) linear independence, minimal (compact) support,
and positivity. An important corollary of the minimal support property of the B-splines that is not often

5

appreciated is the fact that the minimal support property requires that when a single B-spline basis function
is expressed in Bernstein form (i.e., written in terms of the Bernstein polynomials), the function is minimally
supported in the number of positive Bernstein coefficients. In algebraic terms, this means that the vectors of
Bernstein coefficients of the B-spline basis functions form the sparsest positive basis of the nullspace of the
smoothness constraint matrix. However, the problem of finding the sparsest basis for the nullspace of a global
smoothness constraint matrix, derived from an underlying mesh, is notoriously difficult. In fact, for general
matrices this type of problem is known as the Nullspace Problem and has been shown to be NP-hard [12, 13].

Using a brute force approach to solve the global nullspace problem to determine the members of a spline
basis is an intractable problem. To avoid these issues, the U-spline approach leverages a prescribed admissible
mesh topology and properties of a Bernstein-like basis [40] in order to incrementally, through a series of
local operations, construct member functions of the sparsest possible spline basis without directly solving
the global nullspace problem. Note that although this approach is generally applicable to bases that satisfy
the properties of a Bernstein-like basis, for simplicity, only examples using polynomial Bernstein bases are
considered.

Additionally, the U-spline approach seeks to alleviate, if not eliminate, many of those longstanding
limitations in prevailing spline representations discussed previously, providing a smooth spline meshing
technology for industrial-scale FEA applications. In particular, this work can be seen as a generalization
of the key innovations underlying both ASTS and Bézier extraction [8, 54]. Bézier extraction is a method
for providing a local Bernstein representation of a non-local smooth spline function, and is used widely in
IGA. In the U-spline approach, to guarantee the mathematical properties of U-spline spaces, we also impose
restrictions on allowable mesh topologies, as is done in ASTS, but do away with (semi) global data structures,
such as knot vectors and T-meshes, and fully adopt a Bernstein representation of spline functions, as is done
in Bézier extraction. Leveraging this local Bernstein point-of-view, we achieve greater locality in the U-spline
algorithm, making it possible to construct well-behaved bases for a much wider range of spline spaces than is
encompassed by ASTS, including, for the first time, those that permit local variation in degree.

The key contributions of U-splines can be described as follows:

• An algorithm for (1) solving a series of small and highly localized nullspace problems and (2) finding
appropriate combinations of the basis vectors of these localized nullspaces to determine the U-spline
basis functions. Importantly, the size of each localized nullspace problem is bounded by the local
characteristics of the local basis chosen for each cell, the local mesh topology, and the associated
smoothness constraints.

• The algorithm is expressed entirely in terms of integers and requires no floating point operations until
after the indices of the nonzero Bernstein coefficients of a U-spline basis function have been determined.

• The need for artificial constructs like global or local knot vectors, control meshes, or T-meshes is
eliminated. The only input is a properly specified Bézier mesh that characterizes an associated spline
space and the only outputs are linear combinations of Bernstein coefficients that describe U-spline basis
functions that span that spline space.

• The algorithm naturally generalizes to higher dimensions.

• Since continuity constraints, restricted to cell interfaces, are the primal building blocks of the U-spline
algorithm, local variations in h, p, and ϑ can be processed by the same algorithm as well as T-junctions,
extraordinary vertices and triangles. The introduction of local variation in degree in a smooth spline
setting is a particularly important and unique U-spline innovation.

• The only requirement on the local basis assigned to each cell in the Bézier mesh is that it must be
Bernstein-like [40]. The key property is that it must have well-ordered derivatives at cell interfaces.
This means that a mixture of standard polynomial Bernstein bases over quadrilateral and triangular
cells can be used in addition to more exotic Bernstein-like bases based on exponential, trigonometric,
and other special functions. In this work, we restrict our focus to polynomial Bernstein bases.

• A simple definition of admissibility is given that characterizes a Bézier mesh topology, degree, and
smoothness and ensures that the U-spline algorithm, applied to these meshes, produces U-spline basis
functions that are locally linearly independent (thus forming a basis for the spline space), positive,

6

form a partition of unity, and are complete up through a specified polynomial degree. To measure
completeness in the presence of local variation in degree we require that U-splines satisfy both a local
and global completeness measure, both of which are fully characterized by the Bézier mesh.

• The satisfaction of local linear independence is the pace-setting property of U-splines, in that it controls
to the greatest extent, the allowable Bézier mesh topologies. We should note that by relaxing this
requirement to only global linear independence, the class of allowable Bézier mesh topologies that can
be processed by the U-spline algorithm is greatly expanded. We have successfully constructed U-spline
bases in this more general setting but postpone a thorough investigation of those more general U-spline
spaces to a future work, as we have found local linear independence to be particularly beneficial to
applications of the technology we are interested in.

• As far as the authors are aware, the generality of U-splines spaces, in particular local variation in degree,
is beyond the application of the mathematical analysis tools commonly used to rigorously characterize
spline spaces. To compensate for this, we instead validate our mathematical claims numerically through
a rigorous regime of randomly generated examples and postpone a theoretical exploration of these
claims to a future work. We anticipate that this work will spur additional research in the theoretical
characterization of the spline spaces generated by the U-spline algorithm.

• When the input Bézier mesh coincides with single- or multi-patch NURBS or analysis-suitable T-splines
the U-spline algorithm produces those spline spaces and associated bases with pointwise exactness.

In one dimension, we consider U-splines of any degree and any continuity up to the degree. In higher
dimensions, we will only consider U-splines up to degree three with a maximal continuity of C2, and
supersmooth1 interfaces up to C3.

We recognize that the name U-spline was originally used to refer to the definition of splines over unordered
knot sequences [47]. Because the need for unstructured splines is significant and the application of splines
over unordered knot sequences has not yet achieved widespread use, we instead use the U-spline designation
for our splines over unstructured meshes.

1.3 Organization of paper
We begin by introducing the Bernstein polynomials in section 2, their use for defining polynomial spaces
over each element of a Bézier mesh in section 3, and the representation of a piecewise function in Bernstein
form over a Bézier mesh in section 4. Next, we describe the set of continuity constraints associated with a
Bézier mesh in section 5, and in section 6 we discuss the associated nullspace problem which must be solved
to represent a spline over the Bézier mesh that conforms to the constraints. In section 7 we describe a few
tools and metrics for grouping and measuring distances between Bernstein functions on a Bézier mesh, in
preparation for describing the construction of local basis vectors on a Bézier mesh in section 8. An admissible
Bézier mesh, also called a U-spline mesh, is described in section 9, including a set of simple admissibility
conditions, which place constraints on the layout of cells, the degree, and the smoothness of interfaces in the
Bézier mesh which guarantee certain mathematical properties of the corresponding U-spline space. Section 10
lays out the algorithm for constructing a U-spline basis, and section 11 describes the mathematical properties
of this basis and the corresponding U-spline space. A few notable examples of U-splines are highlighted in
section 12.

For a more basic introduction to the essential concepts behind U-splines, we recommend the reader work
through the exercieses in appendix A, which introduce some of the more technical ideas through simple
examples and practice problems, and their accompanying solutions. The appendix also provides additional
detail on the topics of continuity constraints in appendix B, k-cell basis vector construction in appendix C,
and a concept called a ribbon used in defining the admissibility conditions on a U-spline mesh in appendix D.
Finally, appendix E lists Bézier extraction coefficient values for a select collection of U-spline basis function
examples.

1The term supersmooth is defined in section 3.

7

2 The Bernstein polynomials
A fundamental U-spline building block is the Bernstein polynomial basis [20]. A univariate Bernstein
polynomial Bpi : Ω→ R, i = 0, . . . , p, is defined over a parent domain Ω = [0, 1] as

Bpi (ξ) =
(
p

i

)
ξi(1− ξ)p−i (1)

where p is the polynomial degree and ξ ∈ Ω is the parent coordinate. We denote the space spanned by the
Bernstein polynomial basis by B and call it the Bernstein space. The Bernstein space is complete through
polynomial degree |p|. In other words, all polynomials up through degree p are contained in B. The Bernstein
polynomials possess many additional desirable properties such as pointwise nonnegativity and partition of
unity [20].

Note that we have borrowed the idea of a “parent” domain from FEA, where it is used to standardize and
simplify the evaluation of basis functions [27]. The connection of the parent domain to the parametric domain
of U-spline basis functions is described in section 3.2.

2.1 Ordering of derivatives
Of particular importance to the U-spline construction algorithms described later is the natural ordering
exhibited by derivatives of the Bernstein polynomials. Specifically, we say that a function f : R→ R vanishes
n times at a real value a if f (i)(a) = 0 for all i ∈ [0, n). Consider then that the nth derivative of the Bernstein
polynomial Bpi (ξ) is given by

dnBpi (ξ)
dξn

∣∣∣∣
ξ=0

= p!
(p− n)!

(
n

i

)
(−1)n−i (2)

dnBpi (ξ)
dξn

∣∣∣∣
ξ=1

= p!
(p− n)!

(
n

p− i

)
(−1)i−p. (3)

From these equations, we see that dnBp
i

(ξ)
dξn vanishes i times at ξ = 0 and p− i times at ξ = 1. For example,

the value and derivatives of B3
2(ξ) vanish at ξ = 0 for n = 0, 1 since i = 2. This property can be observed

in fig. 1 where we plot the Bernstein polynomials and their derivatives. Note that we have elected to plot
normalized functions, found via B̂p

(n)

i (ξ) = Bp
(n)

i (ξ)/maxξ∈Ω

∣∣∣Bp(n)

i (ξ)
∣∣∣ and f (n) = dnf

dξn , so that all functions
may fit comfortably on the same axis. In each plot, the Bernstein polynomials are shown by the thick solid
line. Thin solid lines correspond to first derivatives, dashed lines to second derivatives, and dotted lines to
third derivatives.

2.2 Degree elevation
The order of the first nonzero derivative of a Bernstein basis function Bpi evaluated on the left boundary
of the parent domain is given by i and by p− i on the right boundary. Consequently, if a single Bernstein
basis function Bpi is to be represented in terms of a degree-elevated Bernstein basis Bqj , q > p, the nonzero
derivatives of both bases must match on the boundaries of the domain.

This requirement places bounds on the indices of the degree elevated Bernstein basis functions that are
required to represent Bpi . If the two sets of basis functions are ordered from left to right then i ≤ j and
p− i ≤ q − j. These requirements can be combined to obtain a range of valid values for j:

i ≤ j ≤ q − p+ i. (4)

2.3 Multivariate Bernstein polynomials
In a d-dimensional multivariate setting, Bernstein polynomials are commonly defined over boxes (e.g.,
quadrilaterals and hexahedra) and simplicial parent domains (e.g., triangles and tetrahedra). The multivariate
Bernstein basis functions presented here possess similar derivative ordering properties to the univariate
basis described previously. To accommodate this d-dimensional extension, we introduce a dimensional index
k ∈ {0, . . . , d}.

8

B̂1(n)

0 (ξ)

ξ

B̂1(n)

1 (ξ)

ξ

n = 0

n = 1

n = 2

n = 3

B̂2(n)

0 (ξ)

ξ

B̂2(n)

1 (ξ)

ξ

B̂2(n)

2 (ξ)

ξ

B̂3(n)

0 (ξ)

ξ

B̂3(n)

1 (ξ)

ξ

B̂3(n)

2 (ξ)

ξ

B̂3(n)

3 (ξ)

ξ

Figure 1: The Bernstein polynomials of degree 1, 2, and 3 and their normalized derivatives, evaluated on ξ ∈ Ω.

2.3.1 Box

A multivariate Bernstein polynomial Bp
i : Ω → R is defined over the d-dimensional hypercube or box

Ω =
⊗d−1

k=0[0, 1] as the tensor product of univariate Bernstein polynomials

Bp
i (ξ) =

d−1∏
k=0

Bpk

ik
(ξk) (5)

where i = (i0, . . . , id−1) and p = (p0, . . . , pd−1) are tuples with ik and pk representing the univariate Bernstein
basis function index and degree in dimensional direction k, respectively, and the parent coordinate ξ =
[ξ0, . . . , ξd−1] ∈ Ω.

2.3.2 Simplicial

A multivariate Bernstein polynomial Bpi : Ω→ R is defined over the convex hull of the d-dimensional unit
simplex Ω =

{
ξ = [ξ0, . . . , ξd] ∈ Rd+1 :

∑d
k=0 ξk = 1 and ξk ≥ 0 for k = 0, ..., d

}
as

Bpi (ξ) = p!
d∏
k=0

ξikk
ik! (6)

where i =
{
ik : 0 ≤ k ≤ d,

∑d
k=0 ik = p

}
is an index tuple, p is the polynomial degree, and the parent

coordinate ξ ∈ Ω is commonly called a barycentric coordinate. For each boundary of the simplex, the nonzero
entries in the basis are precisely the basis for the simplex of dimension d − 1. Observe that the standard
univariate Bernstein basis is merely a special case of the multivariate simplicial form.

9

2.3.3 Tensor-product hybrid

A multivariate Bernstein polynomial Bp
i : Ω → R is defined over the domain Ω constructed by taking the

tensor product of an n-dimensional simplex with Bernstein basis Bp
′

j (ξ) and a (d− n)-dimensional simplex
with Bernstein basis Bp

′′

k (ξ), 0 < n < d,

Ω =
{
ξ = [ξ0, . . . , ξn, ξn+1, . . . , ξd+1] ∈ Rd+2 :

n∑
k=0

ξk = 1,
d+1∑

k=n+1
ξk = 1, and ξk ≥ 0 for k = 0, ..., d+ 1

}
as

Bp
i (ξ) = Bp

′

j (ξ)⊗Bp
′′

k (ξ) (7)

where i =
{
ik : 0 ≤ k ≤ d+ 1,

∑n
k=0 ik = p′,

∑d+1
k=n+1 ik = p′′,

}
is an index tuple, p = (p′, p′′) is the polynomial

degree, and the parent coordinate ξ ∈ Ω is the Cartesian product of the two lower-dimensional barycentric
coordinates. Similar constructions exist for boxes, and tensor products of simplices and boxes.

2.4 Bernstein-like bases
Although the focus is on the polynomial Bernstein basis in this work, this is not a necessary requirement. It
has been shown [40] that quasi-extended Chebyshev (QEC) spaces possess a Bernstein-like basis with the
following property: Let E be an (n+ 1)-dimensional QEC-space on the bounded closed interval [a, b]. Then, E
possesses a quasi-Bernstein-like basis relative to (a, b), that is, a basis Bi : Ω→ R, i = 0, 1, ..., n such that:

• B0(a) 6= 0, and B0 vanishes n times at b; Bn(b) 6= 0, and Bn vanishes n times at a;

• for 1 ≤ i ≤ n− 1, Bi vanishes exactly i times at a and exactly (n− i) times at b.

• for 0 ≤ i ≤ n, Bi is positive on (a, b).

This property is the key requirement for the U-spline definition and construction and so U-splines can be
constructed from meshes with a QEC space assigned to each cell.

3 The Bézier mesh
As mentioned in the previous section, a key property of U-splines is the ability to construct a spline basis on
an unstructured Bézier mesh. A Bézier mesh B is defined by

1. A polyhedral mesh topology,

2. A local parameterization on each cell in the mesh,

3. A Bernstein space B assigned to each cell in the mesh,

4. A minimum level of continuity specified on each interface between cells.

In this section, the notation used throughout the remainder of this paper to describe a Bézier mesh is
introduced.

3.1 Topology
Formally, the Bézier mesh is a tiling of a d-dimensional manifold with box and simplex k-cells, 0 ≤ k ≤ d,
where k is the dimension of the cell. More precisely, the Bézier mesh B is a cell complex where:

• Each k-dimensional cell c is a closed subspace of Rd,

• Any lower-dimensional cell a ⊂ c is also in B,

• The non-empty intersection of any two cells a and b in B is a lower-dimensional cell contained in both.

10

We have the following correspondence to common mesh entities:

d = 1 d = 2 d = 3
d-cell Edge Face Volume

(d− 1)-cell Vertex Edge Face
(d− 2)-cell - Vertex Edge
(d− 3)-cell - - Vertex

When a dimension-agnostic description is appropriate for a concept, we employ the generic terminology d-cell,
(d− 1)-cell, etc. For simplicity, we occasionally refer to d-cells, or elements, by E, (d− 1)-cells, or interfaces,
by I, (d− 2)-cells by w, 2-cells, or faces, by f, 1-cells, or edges, by e, and 0-cells, or vertices, by v. We denote
the set of cells of dimension k in the mesh B by Ck(B).

3.1.1 Adjacencies

It is useful to define a set of k-cell adjacency operators. Given a cell c and a d-dimensional mesh B, the set of
k-cells adjacent to c is denoted by

ADJk(c) =
{

a ∈ Ck(B) : a ∩ c 6= ∅
}

(8)

and
∣∣∣ADJk(c)

∣∣∣ denotes the number of k-cells adjacent to c. Chained adjacency sets are written as

ADJk1 ◦ ADJk0(c) =
⋃

a∈ADJk0 (c)

ADJk1(a). (9)

The boundary of a k-cell c is denoted by
∂c = ADJk−1(c). (10)

Given a k-cell ak, k < d, and an adjacent (k + 1)-cell bk+1 ∈ ADJk+1(ak), the set PC(ak, bk+1) contains
all (k + 1)-cells which are both adjacent to the given k-cell ak and perpendicular to the given (k + 1)-cell
bk+1 ∈ ADJk+1(ak) and is defined as

PC(ak, bk+1) =
(

ADJk+1(ak) ∩ ADJk+1 ◦ ADJd(bk+1)
)
\ bk+1 . (11)

3.1.2 k-cell types

A k-cell ck is an interior cell if every interface adjacent to ck is adjacent to two elements. Otherwise, it is
a boundary cell. We say that ck is regular if it is possible to imbed the adjacent elements into a regular
grid. More specifically, in a d-dimensional mesh a vertex v is regular if all elements in ADJd(v) are box-type
and

∣∣∣ADJd(v)
∣∣∣ = 2(|ADJ1(v)|−d), and a (d − 2)-cell w is regular if all elements in ADJd(w) are box-type and∣∣∣ADJd(w)

∣∣∣ = 2(|ADJd−1(w)|−2). Otherwise, it is an extraordinary cell. Note that all vertices and (d− 2)-cells
adjacent to simplex elements are considered to be extraordinary for this work. On d-dimensional meshes, an
extraordinary (d− 2)-cell w is said to be valence-m if

∣∣∣ADJd−1(w)
∣∣∣ = m.

3.2 Cell domains and parameterization
Building splines over a Bézier mesh requires that a domain and right-handed coordinate system be specified
over each cell. These coordinate systems may change from cell to cell to accommodate extraordinary cells or
cells of different type, such as between box-like and simplicial cells.

Each cell c is assigned a parent domain Ω and a right-handed coordinate system ξ ∈ Ω or, when referencing
a particular cell c, Ωc and ξc, respectively. We define ΩB =

⋃
c∈B Ωc. For box cells, Ω is assumed to be a unit

hypercube with a cartesian coordinate system and, for simplicial cells, Ω is taken to be the convex hull of a
unit simplex with barycentric coordinates. The parent domain is defined in this way to simplify or standardize
the implementation and evaluation of a Bernstein basis.

11

Many situations require the use of nonuniform cell dimensions. The canonical example is nonuniform
B-splines; the knot vector that defines the basis possesses intervals of varying length. Although we do not
use a knot vector in the definition of U-splines, we do require the flexibility of nonuniform parametric cell
dimension. Each cell c is assigned a parametric domain Ω̂ and a right-handed coordinate system s ∈ Ω̂ or,
when referencing a particular cell c, Ω̂c and sc, respectively. We define Ω̂B =

⋃
c∈B Ω̂c. The parametric domain

of a box cell is assumed to be a hyperrectangle with Cartesian coordinates. It is a potentially nonuniform
scaling of a unit hypercube (the length in each direction may be different). The parametric domain of a
simplicial cell will be the convex hull described by the simplex whose edges have been assigned arbitrary
lengths but which are usually set to be equal to the parametric size of adjacent box cells. Barycentric
coordinates are again assumed for the simplicial parametric domain. Although not discussed further in this
work, the relative parametric sizes of adjacent cells must be chosen carefully so as to admit a well-defined
smooth spline basis [9].

In two dimensions, we will often refer to the parametric coordinate s as [s0, s1] on a quadrilateral face
and [λ0, λ1, λ2] on a triangular face, as shown in fig. 2a. In three dimensions, we will refer to the parametric
coordinate s as [s0, s1, s2] on a hexahedral volume, as shown in fig. 2b. The operator s⊥E (I) returns the set of
parametric coordinates on element E that are normal to the interface I ∈ ADJd−1(E) and the operator s‖E(ck)
returns the set of parametric coordinates on element E that are parallel to an adjacent k-cell ck ∈ ADJk(E).
Similarly, s‖Ω(ck) returns the set of coordinates in submesh domain Ω (section 7.2) that are parallel to ck.

If required, the orientation of a cell’s parametric coordinate system will be specified by a small axis located
at the origin of the coordinate system. If the small axis is omitted, a cell on a two-dimensional mesh is
assumed to be oriented with the page, with the origin of the parametric coordinate system at the bottom-left
corner (see fig. 2a). Note that on triangles, typically only the barycentric axes associated with λ1 and λ2 are
shown, since λ0 = 1− λ1 − λ2. On volumetric meshes, as shown in fig. 2b, a similar small axis may be used to
specify the orientation of the parameterization. The parametric coordinate systems on a volumetric Bézier
mesh can be rotated relative to each other as shown on the bottom two cells in fig. 2b.

For every cell c, we assume there exists a linear transformation between the parent and parametric domains
wherein the parametric domain can be described in terms of the parent coordinates ξc ∈ Ωc. We denote this
linear mapping by φc : Ωc → Ω̂c where sc = φc(ξc) = Acξc. Note that for box cells φc is a simple scaling, i.e.,
the matrix Ac is diagonal.

λ1

λ2

λ1

λ2 s0

s1

s0

s1

(a) (b)

Figure 2: Examples of parametric coordinate systems specified on quadrilaterals and triangles in two dimensions
(left) and on hexahedra in three dimensions (right) using small axes.

3.3 Cell space and degree
A box or simplicial Bernstein space B is assigned to each cell c and is denoted by Bc. We denote the total
degree of polynomial completeness of the Bernstein space on c by |pc|.

The following derived quantities will be used extensively in the description of the U-spline algorithm. Let
p⊥I (E) denote the degree on a d-cell E in the direction perpendicular to the adjacent interface I and p‖e (E)

12

denote the degree on a d-cell E in the direction parallel to the adjacent edge e. Let p‖ck (E), 0 ≤ k ≤ d denote
the k-dimensional tuple p containing the degrees on E in the directions parallel to the cell ck. We can then
define the useful operators p⊥max(I), p⊥min(I), p‖max(e), and p‖min(e) as

p⊥max(I) = max
E∈ADJd(I)

p⊥I (E), (12)

p⊥min(I) = min
E∈ADJd(I)

p⊥I (E), (13)

p‖max(e) = max
E∈ADJd(e)

p‖e (E), (14)

p
‖
min(e) = min

E∈ADJd(e)
p‖e (E). (15)

To measure the the minimum or maximum degree in a direction parallel to an interface I and perpendicular
to a (d− 2)-cell w adjacent to the interface we define p‖,⊥min(I,w) and p‖,⊥max(I,w) as

p
‖,⊥
min(I,w) = min

E∈ADJd(I)
p⊥I′ (E), I′ ∈

(
ADJd−1(E) ∩ ADJd−1(w) \ I

)
, (16)

p‖,⊥max(I,w) = max
E∈ADJd(I)

p⊥I′ (E), I′ ∈
(

ADJd−1(E) ∩ ADJd−1(w) \ I
)
. (17)

3.4 Interface continuity
Given a d-dimensional mesh B, each interface I is assigned a required minimum continuity ϑ. We denote the
continuity ϑ assigned to an interface I by ϑI. Note that for certain mesh configurations, the U-spline basis
may be smoother than the specified conditions on the interfaces. We say that an interface I has reduced
continuity with respect to an adjacent d-cell E if ϑI < p⊥I (E)− 1 where p⊥I (E) is the degree on a d-cell E in
the direction perpendicular to the adjacent interface I. We say that an interface is creased if it has been
assigned C0 or C−1 continuity and a (d− 2)-cell is creased if all adjacent interfaces are creased. The operator
ϑ⊥max(ak, bk+1) returns the maximum continuity of all the interfaces that are both adjacent to the given k-cell
ak and perpendicular to the given (k + 1)-cell bk+1 ∈ ADJk+1(ak), and is defined as

ϑ⊥max(ak, bk+1) = max
I∈PI(ak,bk+1)

ϑI (18)

where

PI(ak, bk+1) =
{

I ∈ ADJd−1(ak) ∩ ADJd−1 ◦ ADJd(bk+1) : ∀E ∈ ADJd(bk+1), s⊥E (I) ⊆ s‖E(bk+1)
}
. (19)

The continuity of interfaces on two-dimensional figures will be indicated by an accompanying legend or
a description in the caption. The continuity of interfaces on volumetric meshes will be indicated by the
description in the caption and will follow the pattern indicated in fig. 3. The most common continuity in the
mesh and boundary interfaces are often left colorless for greater clarity.

Continuity legend: Quadratic volumetric mesh

C0
C1

C2

Continuity legend: Cubic volumetric mesh

C0
C1

C2 C3

Figure 3: The continuity of interfaces on volumetric Bézier meshes are indicated by the color of a semi-transparent
surface drawn on the interface.

13

3.4.1 Supersmooth interfaces

When setting the smoothness of an interface we normally require that

ϑI < p⊥min(I) (20)

and say that ϑI is maximally smooth if
ϑI = p⊥min(I)− 1. (21)

Additional options are possible with U-splines. We say an interface I is supersmooth if

ϑI = p⊥I (E) (22)

for some element E adjacent to I. If, additionally

ϑI = p⊥max(I) (23)

then the supersmooth interface is in fact C∞. Note that a supersmooth interface is a generalization of the
concept of T-junctions [55].

We do not explore this concept further but rather restrict supersmoothness to the simple case where,
given two elements a and b that share interface I, we allow ϑI = p⊥max(I) and require that p⊥I (a) = p⊥I (b) and
p‖I (a) = p‖I (b). Figure 4 shows several examples of supersmooth interfaces. On the left, an example of a
two-dimensional Bézier mesh with maximally smooth interfaces (eq. (21)) is shown. The two meshes shown in
the center have supersmooth interfaces with differing perpendicular degree (eq. (22)). On the right, a C∞
supersmooth interface in a configuration which is equivalent to a T-junction (eq. (23)) is shown.

Continuity C0

Continuity C1

Continuity C2

Figure 4: Examples of supersmooth interfaces.

4 Bernstein representations
We now turn our attention to how spline functions are defined over a Bézier mesh. As discussed previously,
classical spline technologies, such as NURBS and T-splines, rely on a certain level of global structure to define
basis functions. In the case of NURBS, all cells in one direction must use the same polynomial degree and
higher-dimensional splines are constructed by global tensor products of univariate NURBS. T-splines also
require the specification of global polynomial degree and, while T-splines require less global structure than
NURBS, each T-spline basis function is constructed on a local tensor product region. For T-splines, it can be
difficult to infer the properties of the underlying spline space by examining the associated T-mesh.

A key practical and conceptual development in the field of IGA was the advent of Bézier extraction as an
analysis technology. Bézier extraction allows global spline functions to be evaluated locally on a Bézier cell [8,
54]. More generally, Bézier extraction is a method of providing a Bernstein representation of spline functions
while maintaining the connection to global spline representation. Bernstein representations are central to
representing U-splines, and this section serves to present the necessary notation that will be used throughout
the rest of this paper.

14

4.1 Indexing
The ith Bernstein polynomial on a k-cell c in the mesh forms a unique index, denoted by ic, that specifies both
c and the local Bernstein function index i. For simplicity, and when the meaning is unambiguous, we will
often just use i to denote both the function index and cell. The set of all indices for all Bernstein polynomials
defined over all cells in B is denoted by ID(B) and ID(c) is used to represent the indices for c. We denote the
number of indices in any index set by |ID|. The cell associated with a given index is denoted by cell(i) and
the set of cells associated with an index set ID is written as

C(ID) :=
⋃
i∈ID

cell(i). (24)

We will often denote a set of index sets by ID.
Figure 5 shows an example of indices on two-dimensional cells. The positioning and quantity of indices

indicates the polynomial degree of the Bernstein functions on each cell in each parametric direction. For
example, the quadrilateral cell in fig. 5 is quadratic in s0 and cubic in s1. On triangular cells, we use the
convention to list only indices i1 and i2 since on a two-dimensional simplicial Bernstein polynomial, one of
the indices is fixed by the choice of polynomial degree and the other two indices: i0 = p− i1 − i2, ik ∈ i. In
figures where the specific index is either apparent from context or not required, we represent indices as small
circles or spheres as shown in figs. 5 and 6. Note that we draw these circles inset from the boundary of the
cell to avoid confusion between functions on adjacent cells.

(0, 0)a (1, 0)a (2, 0)a

(0, 1)a (1, 1)a (2, 1)a

(0, 2)a (1, 2)a (2, 2)a

(0, 3)a (1, 3)a (2, 3)a

(0, 0)b (1, 0)b (2, 0)b

(0, 1)b (1, 1)b

(0, 2)b

Figure 5: The Bernstein indices (on the left) and corresponding circles (on the right) for a two-dimensional mesh
with a quadrilateral and trianglar cell, with degrees p = (2, 3) and p = 2, respectively.

Figure 6: We depict Bernstein indices in volumetric cells as small spheres, the positioning and quantity of which
indicate the polynomial degree of the Bernstein functions on each cell in each parametric direction. The cells
from left to right have degrees p = (1, 1, 1) , (2, 2, 2) , (3, 3, 3), respectively.

4.2 Bernstein form
We say that a piecewise function f : Ω̂B → R can be written in Bernstein form on the mesh B if it may be
expressed as a linear combination of the Bernstein polynomials on each d-cell E in the mesh. In other words,
given a set of Bernstein coefficients

c[B] = {ci}i∈ID(B) (25)

15

the Bernstein form of f is
f(s) =

∑
i∈ID(B)

ciBi(φ−1(s)) ∀s ∈ Ω̂B. (26)

We will often use the Bernstein coefficients c[B] of f and the function f interchangeably.
The index set of f , or equivalently, c[B], is ID(B) by definition since the domain of f is Ω̂B. Functions that

are nonzero on only a portion of the Bézier mesh S ⊂ B will typically have a large number of zero coefficients
and so we adopt a sparse representation that contains only the indices that correspond to nonzero coefficients.
The indices associated with the nonzero Bernstein coefficients in c[B] or f is denoted by

ID(c[B]) = {i ∈ ID(B) : c[B] 3 |ci| > 0} . (27)

The nonzero support of f , denoted by supp+(f) or supp+(c[B]), is the parametric domain over which the
function is nonzero

supp+(f) =
⋃

i∈ID(f)

Ω̂c(i). (28)

Given a function f in Bernstein form and an index set ID, we define the restriction of f , denoted by f |ID
or, equivalently, c[B]|ID, to be the function having the same Bernstein coefficient values as f for all indices in
ID and zero for all indices not in ID.

4.3 The trace mapping matrix
Assume that we are given an element E, with associated parametric domain Ω̂E, and an adjacent (lower-
dimensional) interface I, with parametric domain Ω̂I ⊂ Ω̂E, and a map φI→E : Ω̂I → Ω̂E, and Bernstein bases
BE

j : Ω̂E → R and BI
i : Ω̂I → R satisfying BE

i ◦ φI→E =
∑

j∈ID(I) cjB
I
j (all functions from the element basis

can be represented as linear combinations of interface basis functions). Then, the components of the trace
mapping matrix M are

[M]ij =
〈
B̄I

i , B
E
j

〉
I
=
∫
Ω̂I

B̄I
i (s)BE

j (φI→E(s)) d Ω̂ (29)

where B̄I
i is dual to BI

i in the sense that
〈
B̄I

i , B
I
j

〉
I
= δij [29].

We use Dn
I⊥f to indicate the nth directional derivative of the function f : Ω̂c → R with respect to the

direction perpendicular to the interface I. the components of the trace derivative mapping matrix Mn are

[Mn]ij =
〈
B̄I

i , D
n
I⊥B

E
j

〉
=
∫
Ω̂I

B̄I
i (s)(Dn

I⊥B
E
j)(φI→E(s))) d Ω̂ . (30)

For a given i ∈ ID(I) the set of indices on E that correspond to the nonzero coefficients on the ith row of
M is denoted NZ and is defined as

NZ(M , i) =
{

j ∈ ID(E) :
∣∣∣[M]ij

∣∣∣ > 0
}
. (31)

Note that, in practice, there are efficient approaches for determining the indices of the nonzero coefficients of
the trace mapping matrix without computing the matrix terms via integration.

5 Continuity constraints
As mentioned in section 3, a Bézier mesh B has a prescribed minimum continuity ϑ assigned to each interface
I. That is, a piecewise function f defined over Ω̂B should have at least ϑ+ 1 continuous derivatives across
I. Given a function f in Bernstein form, we may state a continuity constraint in terms of the function’s
Bernstein coefficients, c[B]. We denote a set of continuity constraint coefficients as r. Then, we may write a
homogeneous continuity constraint on a piecewise function in Bernstein form as∑

i∈ID(r)

rici = 0. (32)

16

An abstract approach to assembling the constraint sets is presented here, which may be applied to
determine the constraint equations for meshes of any dimension.

5.1 Constraint sets
The set of continuity constraints associated with an interface I is denoted by R(I) and the set of all continuity
constraints defined over B is denoted by

R(B) =
⋃
I∈B

R(I). (33)

Given a k-dimensional cell ck ∈ Ck(B), 0 ≤ k < d− 1, the associated set of continuity constraints is the
union of all constraint systems associated with interfaces satisfying I ∩ ck 6= ∅:

R(ck) =
⋃

I∈ADJd−1(ck)

R(I). (34)

Given an index set ID and a continuity constraint, r, the restriction of the constraint to the index set is the
constraint that results from keeping only the coefficients associated with indices in the index set. It is denoted
by r|ID. Given an index set ID and a set of continuity constraints R, we denote the restricted set of continuity
constraints by

R|ID = {r|ID : ‖r|ID‖ > 0, r ∈ R}. (35)

In other words, any constraints that are empty after the restriction to the index set has occurred are removed.

5.2 Constraint matrices
Given a set of continuity constraints R, an index set ID, and a function iID that assigns a unique integer
i ∈ 0, ..., |ID|−1 to every index in ID, we can construct a matrix R|ID ∈ R|R|×|ID|, called a (restricted) constraint
matrix. For simplicity, the constraint matrix associated with a k-cell c is denoted by R(c) and the constraint
matrix for the entire Bézier mesh B is denoted by R(B).

5.3 Constraint construction
We consider constructing constraints on the interface I between two elements a and b on a d-dimensional
Bézier mesh, where I = a ∩ b. Given two functions defined in Bernstein form, f a defined over a as

f a(s) =
∑

j∈ID(a)

cjB
a
j (s) (36)

and fb defined over b as
fb(s) =

∑
j∈ID(b)

cjB
b
j (s). (37)

We also require the maps from the shared interface I to a and b: φI→a : Ω̂I → Ω̂a and φI→b : Ω̂I → Ω̂b.
If the functions f a and fb satisfy

f a ◦ φI→a(s) = fb ◦ φI→b(s) (38)

for any s ∈ Ω̂I then we say that they are value continuous or C0. This pointwise constraint over the interface
can be converted to a constraint on the coefficients that define the two function through the use of the trace
mapping matrix defined previously.

We choose a basis defined on the interface that is sufficient to generate the trace mapping matrices for both
a and b: M0,a andM0,b. Equipped with these matrices, the value constraint given in eq. (38) is equivalent to∑

j∈ID(a)

[
M0,a]

ij cj =
∑

k∈ID(b)

[
M0,b]

ik ck (39)

17

for all indices i associated with the basis selected for the interface. It is often convenient to express constraints
in homogeneous form: ∑

j∈ID(a)

[M a]ij cj −
∑

k∈ID(b)

[
Mb]

ik ck = 0. (40)

Continuity constraints associated with the nth derivative can be constructed by using the matrices Mn,a and
Mn,b.

Other work has been done that allows for higher-order continuity constraints for simplex cells to be stated
similarly [48]. Thus, the Cn continuity constraint equations are∑

j∈ID(a)

[
MCn,a

]
ij
cj −

∑
k∈ID(b)

[
MCn,b

]
ik
ck = 0, i ∈ ID(I) . (41)

For detailed derivations of the continuity constraints in two dimensions see appendix B. A few simple exercises
that introduce continuity constraints are found in appendix A.1.

6 Splines and the nullspace problem
Given R(B) we can form the corresponding vector nullspace problem: Determine the nullspace N ⊆ R|ID(B)|

where
N(B) = span{c[B] ∈ R|ID(B)| : R(B)c[B] = 0}. (42)

The rank-nullity theorem tells us that the dimension of the nullspace is dim N = |ID(B)| − rank(R(B)).

6.1 Basis vectors
As with any vector space, any vector in N can be represented as a linear combination of the members of a
linearly independent set of vectors. The Ath such vector is called a basis vector, denoted by uA, and the set
of basis vectors, denoted by UV(B), form a basis for the nullspace. Of particular importance is determining
a sparse positive basis for N(B). This means that we seek to find a set of basis vectors where the set of
Bernstein coefficients that define the basis vector has a small number of positive nonzero coefficients (and no
negative coefficients). The set of indices associated with the nonzero coefficients of a basis vector ID(u) is
sufficiently important that we introduce the symbol id to represent these sets. We also define the set of index
sets associated with the basis vectors

UI = {ID(u),u ∈ UV} . (43)

6.2 Basis functions
Since the Bernstein coefficients that compose each basis vector correspond to a set of Bernstein basis functions
we can also formulate an equivalent operator nullspace problem. In this case, the commonly used terminology
changes slightly: Given the Bernstein space B(B), the constraint space C(B), and the linear constraint operator
R(B) : B(B) → C(B), determine the linear subspace of B(B), called the kernel or nullspace of R(B) and
denoted by N (B), where

N (B) = {f ∈ B(B) : R(B)(f) = 0}. (44)

In this case, there is a set of functions, denoted by UF(B), that span the null space N (B). The Ath such
function is called a basis function, denoted by NA.

6.3 Spline form
Due to the equivalence between eqs. (42) and (44), the basis functions NA : Ω̂B → R in UF(B) not only define
N (B) directly as

N (B) =

f : f =
∑

NA∈UF(B)

cANA, cA ∈ R

 (45)

18

but are also written in terms of the basis vectors in UV(B) as

NA(s) =
∑

i∈ID(B)

uAi Bi(s) ∀s ∈ Ω̂c ∀c ∈ B (46)

where uAi ∈ uA ∈ UV(B).
Importantly, since each NA satisfies the continuity constraints on Ω̂B it is immediately obvious that

NA is not only a function in Bernstein form but also a spline, i.e., it is a piecewise function that satisfies
the continuity constraints across all cell interfaces. In other words, finding a sparse positive basis for the
nullspace N is equivalent to finding a set of spline basis functions that defines an equivalent spline space. This
observation is fundamental to the U-spline construction algorithms presented in this paper.

6.4 Extracted form
For convenience, we often arrange the Bernstein and U-spline basis functions that are nonzero over a k-cell c
into vectors, denoted by Bc and N c, respectively. We can then arrange the Bernstein basis vector coefficients
on c for each U-spline basis function into corresponding rows in a matrix Cc ∈ R|N c|×|Bc|, called a cell or
element extraction matrix. We then have the extracted form of the U-spline basis:

N c(ξc) = CcBc(ξc), ξc ∈ Ωc
. (47)

In this case, we call the Bernstein basis vector coefficients extraction coefficients. Note that at times it is
convenient to combine the cell extraction matrices into a global extraction matrix C. Representing U-spline
basis functions in extracted form is a powerful and convenient abstraction when generalizing finite element
frameworks to accommodate smooth spline bases like U-splines. In particular, it is the preferred and simplest
representation for smooth splines when the underlying algorithms used to generate the spline basis are not
the primary concern.

A few simple exercises that introduce splines and the nullspace problem are found in appendix A.2.

7 Bernstein basis metrics and index measurements
It will be necessary to perform various measurements on submeshes to define relationships between Bernstein
bases on adjacent cells. Foundational to these techniques are the Greville points associated with the Bernstein
basis functions.

7.1 Greville points
The ith Bernstein polynomial on a k-cell c in the mesh can be associated with a parent point known as a
Greville point g or a domain point. For example, for a univariate Bernstein basis function of degree p defined
on Ω = [0, 1] this point or abscissa is given by i/p ∈ Ω and, for a tensor product function, the point is given
by the ordered tuple of parent Greville points for each of the Bernstein functions appearing in the product:

g(i) =
(

c,
(

ik
[pc]k

, ik ∈ i
))

. (48)

An example is shown in fig. 7.

g(i)

Figure 7: Each Bernstein function in a cell has an associated point known as a Greville point g in the parent
domain of the cell, depicted on the right as small black circles.

19

7.2 Submesh domains
We now need to identify a subdomain and coordinate system that encompasses multiple cells and that allows
us to easily take advantage of the ordered derivative property of the Bernstein basis defined over each cell.
To accomplish this, given a submesh K ⊆ B, a submesh domain Ω and right-handed orthogonal coordinate
system α ∈ Ω is constructed. In other words, for a given coordinate α ∈ Ω we have that

α =
∑
k

αkek (49)

where
ei · ej = δij . (50)

Note that the origin can be placed anywhere in Ω but is usually placed to simplify the problem at hand.
When referencing a particular submesh K, we use ΩK and αK, respectively. Note that the submesh domain
corresponding to a set of indices ID is created by setting K = C(ID).

To construct ΩK we define a set of affine transformations, denoted by {ϕc}c∈K, ϕc : Ωc → Ωc, where

ϕc(ξc) = Acξc + αc ∀ξc ∈ Ωc (51)

and Ac = ScRc is a transformation composed of a scaling Sc and a rotation Rc. The submesh domain is now
constructed as

ΩK =
⋃
c∈K

ϕc(Ωc). (52)

7.2.1 Indexed submesh domains

The choice of the scaling operator Sc is particularly important and can be chosen to expose certain properties
of the Bernstein basis. In particular, we can define a particularly simple scaling that can be leveraged to take
advantage of the ordered derivative property of the Bernstein basis. In this case, we define the scaling Sc to
be

Sc =

p0
c . . . 0
...
0 . . . pd−1

c

 . (53)

In this case, we have that
ic = Scg(ic) (54)

and the submesh Greville points g ∈ Zd are defined by the mapping ϕc as

g = ϕc(g). (55)

Due to the fact that, under the scaling chosen, all the submesh Greville points are composed of integers,
we call this type of submesh domain an index domain and that the domain is indexed by the submesh Greville
points g. A set of submesh Greville points is denoted by G and a set of sets of submesh Greville points is
denoted by G.

We will often choose the transformations ϕc so that both the indices and certain chosen features align.
For example, when considering two cells of differing degree, the index map will not preserve all topological
relationships that exist between the elements (the same vertex may be mapped to two different points under
two adjacent maps, etc.) and so we choose to preserve relative orientation and require that a single vertex
be preserved under adjacent maps. This is shown in fig. 8. To help differentiate between Greville points on
adjacent elements, we often will draw the circles representing the Greville points with respect to a scaled
element inset from the boundary, as seen in fig. 9.

20

(−2, 0) (−1, 0)

(−2, 1) (−1, 1)

(−2, 2) (−1, 2)

(0, 0) (1, 0) (2, 0) (3, 0)

(0, 1) (1, 1) (2, 1) (3, 1)

(0, 2) (1, 2) (2, 2) (3, 2)

(0, 3) (1, 3) (2, 3) (3, 3)

α0
α1

Figure 8: The submesh Greville points on an indexed submesh domain composed of two adjacent cells with
differing degree. Each Greville point is labeled with its corresponding coordinate index. The origin chosen for
this submesh domain is indicated by the small axis.

Figure 9: To help differentiate between Greville points on adjacent elements, we often will draw the circles
representing the Greville points with respect to a scaled element inset from the boundary, as seen here.

7.3 Equivalence relations and classes
Recall that an equivalence relation partitions a set into equivalence classes. An equivalence class is a set of
objects which are defined as equivalent by a given equivalence relation. The set of equivalence classes induced
by an equivalence relation is commonly called a partition.

The equivalence relations used here will be based on a classical result in finite-dimensional vector spaces.
Given any subspaceW ⊆ Ω, any vector α ∈ Ω can be written uniquely in terms of the parallel and perpendicular
projectors π‖W : Ω→W and π⊥W : Ω→ N (π‖W) as

α = π
‖
W(α) + π⊥W(α). (56)

Now, given two Greville points g and h we define the equivalence relation $‖W to be true if π‖W(g) = π
‖
W(h)

and false otherwise and the equivalence relation $⊥W to be true if π⊥W(g) = π⊥W(h) and false otherwise. When
distinguishing between parallel and perpendicular projectors is not important we will use the superscript ∗ to
convey that the corresponding statement holds for either case.

These equivalence relations can then be used to create corresponding partitions of a set of Greville points
G denoted by G/$∗W . We see this in fig. 10 where the Greville points on a cell c are partitioned with respect
to an edge e using the equivalence relations $‖e and $⊥e , forming partitions G(c)/$‖e and G(c)/$⊥e . We define
the shorthand

G∗W = G/$∗W (57)

and for any equivalence class G ∈ G∗W we define

π∗W(G) = π∗W(g), g ∈ G ∈ G∗W (58)

since every point in an equivalence class has the same projected value.
We also extend the equivalence relation $∗W to sets of points. We say that a set of points A is equivalent

to another set of points B if they project to the same set of points under the projection

π∗W(A) = π∗W(B). (59)

We can partition sets containing sets of points with this relation.

21

e e

Figure 10: The parallel and perpendicular equivalence relations $‖e and $⊥e are used to partition the Greville
points on a cell c with respect to the adjacent edge e, forming partitions G(c)/$‖e and G(c)/$⊥e .

7.4 Alignment
In order to compare indices on two or more adjacent elements, we define the concept of alignment. We
first introduce the concept in two dimensions where an intuitive geometric description is available and then
generalize those ideas to arbitrary dimensions.

7.4.1 Alignment in two dimensions

We consider two elements a and b on a two-dimensional mesh. In order to compare indices on a and b, we
construct an index domain on the two elements so that a set of boundary edges {e ∈ ∂a ∩ ∂b : v ∩ e 6= ∅}
that share a common vertex v are aligned and so that v lies at the origin. An example of an index domain
satisfying these conditions is shown in fig. 8. Next, we form the set of points shared between both elements
under this index mapping GI = GA ∩ GB, where GA are the points on element a and GB are the points on
element b. Figure 11 shows an example of these sets on two adjacent elements with degrees (1, 1) and (1, 2).

GA

GB

a I b
v

GI = GA ∩ GB

a I b
v

Figure 11: An example of the sets GA, GB, and GI on two adjacent elements a and b with degrees (1, 1) and (1, 2).

For each of the three sets GA, GB, and GI we determine the projected point that is farthest from v:

ga
max = g ∈ π

‖
I (GA) : ‖g − v‖2 = max

g∈π‖I (GA)
‖g − v‖2 , (60)

gb
max = g ∈ π

‖
I (GB) : ‖g − v‖2 = max

g∈π‖I (GB)
‖g − v‖2 , (61)

gI
max = g ∈ GI : ‖g − v‖2 = max

g∈GI
‖g − v‖2 . (62)

These points can be used to define difference vectors:

∆ga
max = ga

max − gI
max (63)

∆gb
max = gb

max − gI
max. (64)

Figure 12 shows the projected points for the elements in fig. 11 as black circles along the shared interface I.
The associated difference vector ∆gb

max is shown with a curly bracket. The difference vector ∆ga
max in this

example has length zero and is not shown.
Given a difference vector ∆gamax we define a set of offset points given a point g as

Offsetg(∆gamax) = {g} ∪ {g + ∆gamax} . (65)

22

ga
max gI

max

gb
max

∆gb
max

a I b
v

Figure 12: The projected points for the two elements in fig. 11 are shown as black circles along the shared interface
I. The difference vector ∆gb

max is shown with a curly bracket.

Now, using AABB(P) to denote an axis-aligned bounding box associated with a set of points P, for every point
gI ∈ GI there are unique regions associated with GA and GB

Ωa
gI = AABB(OffsetgI(∆ga

max)), (66)
Ωb

gI = AABB(OffsetgI(∆gb
max)). (67)

Each region defines a subset of the equivalence classes on the associated faces:

GA‖I,gI =
{

G ∈ GA‖I : π‖I (G) ⊆ Ωa
gI ,GA‖I = GA/$‖I

}
, (68)

GB‖I,gI =
{

G ∈ GB‖I : π‖I (G) ⊆ Ωb
gI ,GB‖I = GB/$‖I

}
. (69)

For every gI ∈ GI there is a unique set of equivalence classes from GA‖I and another unique set from GB‖I .
We say that these two sets of equivalence classes are aligned and define a set containing the aligned sets of
equivalence classes as

AligngI = GA‖I,gI ∪ GB‖I,gI . (70)

Figure 13 shows each set of aligned sets of equivalence classes for the elements in fig. 11 along the shared
interface I. We use superscripts to refer to subsets of AligngI formed from equivalence classes associated with
a single cell. Aligna

gI is the set of equivalence classes in AligngI associated with points on a. This approach
may appear ambiguous for simplicial cells but because we restrict ourselves to C0 interfaces around simplicial
cells there is no ambiguity.

a I b a I b

Figure 13: Given a Greville point on the shared interface gI ∈ GI, a set of equivalence classes on element a (denoted
GA‖I,gI) is aligned with a corresponding set of equivalence classes on element b (denoted GB‖I,gI), together forming
a set of aligned sets of equivalence classes (denoted AligngI).

7.4.2 Alignment in arbitrary dimensions

Consider m ≥ 2 neighboring elements Ek, k ∈ {1, ...,m} on a d-dimensional Bézier mesh that meet at a
common lower-dimensional adjacent cell c. Recall that each element Ek has a prescribed Bernstein space and
set of Greville points GEk. The cell c is assigned a Bernstein space with polynomial degree pc equal to the
minimum of all degrees on Ek in each parametric direction parallel to c. In the case that c is a vertex, the
Bernstein basis is assumed to be constant.

23

The set GEk can be partitioned into equivalence classes with respect to c as

GE‖k,c = GEk/$‖c . (71)

We construct trace mapping matrices Mk for each Ek with respect to c and for each i ∈ ID(c) collect indices
on Ek that correspond to the nonzero coefficients on the ith row of Mk, denoted NZ(Mk, i), as described in
section 4.3.

For each i ∈ ID(c) there is a unique set of equivalence classes from each GE‖k,c defined as

GE‖k,c,i =
{

G ∈ GE‖k,c : π‖c (G) ⊆ π‖c (g(NZ(Mk, i)))
}
. (72)

We say that these sets of equivalence classes, one set from each element Ek for a given i, are aligned and define
a set containing the aligned sets of equivalence classes as

Alignc,i =
⋃
k

GE‖k,c,i. (73)

As we did in the two-dimensional case, we use superscripts to refer to subsets of Alignc,i formed from
equivalence classes associated with a single element. For example, AlignEk

c,i is the set of equivalence classes in
Alignc,i associated with points on element Ek. In this context, we refer to i ∈ ID(c) as an alignment index. See
figs. 14 and 15 for simple illustrations of these ideas.

1 0

B1(ξ)

ξ

1 1
2 0

B2(ξ)

ξ

0 1

B1(ξ)

ξ

0 1
2 1

B2(ξ)

ξ

Figure 14: The concept of alignment follows naturally from the fact that multiple nonzero coefficients corresponding
to higher-degree Bernstein basis functions are required to represent a single Bernstein function of lower degree
(see section 2.2).

a I b a I b

Figure 15: Given an alignment index i on a shared interface I, i ∈ ID(I), a set of equivalence classes on element
a (denoted Aligna

I,i) is aligned with a corresponding set of equivalence classes on element b (denoted Alignb
I,i),

together forming a set of aligned sets of equivalence classes (denoted AlignI,i).

24

8 Basis vectors for k-cell nullspaces
Given R(c) for any k-cell c ∈ B we want to determine the set or system of basis vectors, denoted by BV(c),
that span the nullspace of the corresponding restricted constraint matrix R(c). Importantly, we require that
a set of admissibility conditions defined in section 9.2 be satisfied by the mesh B. With this restriction we can
use the ordered derivative property of the Bernstein basis to efficiently identify the index support of each
basis vector through a series of operations on ID(B).

The set of index sets associated with a set of basis vectors is used with sufficient frequency that we use
BI(c) = {ID(v),v ∈ BV(c)} to represent it. We also define the set of mapped index sets associated with the
basis vectors of the cell c to be BG(c) = {{φ(i), i ∈ ID} , ID ∈ BI(c)} for a suitably chosen index mapping φ.

To aid the reader in understanding these concepts we begin in one dimension and then move to interface
and vertex basis vectors in two dimensions followed last by the technical description of k-cell basis vectors in
arbitrary dimensions. Most of the needed intuition for the general setting can be developed in the one- and
two-dimensional settings.

8.1 Basis vectors in one dimension
The constraint matrix to enforce Cϑ across an interface R(I) in a one-dimensional mesh has rank ϑ+ 1. This
is a consequence of the ordering of the Bernstein constraints. A suitable choice of permutation of the ϑ+ 1
rows will produce a constraint matrix in lower triangular form and therefore the matrix has rank ϑ+ 1.

Given an interface I in a one-dimensional mesh where I has been assigned a continuity ϑ, the minimum
number of nonzero contiguous Bernstein coefficients in any basis vector having nonzero indices in both edges
adjacent to I is ϑ+ 2. Let rρ represent the row of the constraint matrix R(I) associated with the constraint
for continuity of level ρ, 0 ≤ ρ ≤ ϑ; there are a total of ϑ+ 1 rows in the matrix. Begin with ρ = 0 and pick a
unit vector u−1 with a single positive nonzero entry that satisfies |r0u−1| > 0. Now pick a second unit vector
u′0 with a single nonzero entry that satisfies |r0u

′
0| > 0 and 〈u−1,u

′
0〉 = 0. The two vectors can be combined

to form a new vector u0 = u−1 + au′0 that satisfies r0u0 = 0. The system can be solved to find that

a = −r0u−1

r0u′0
(74)

and so
u0 = u−1 − u′0

r0u−1

r0u′0
. (75)

By construction, the vector u0 has two nonzero entries. The same procedure can be applied to obtain solutions
to the higher-order continuity constraints. This gives rise to the recursive definition:

uρ = uρ−1 − u′ρ
rρuρ−1

rρu′ρ
(76)

where at each stage u′ρ is chosen so that
〈
uρ−1,u

′
ρ

〉
= 0 and so that the nonzero entry in u′ρ is adjacent to

the nonzero entries of uρ−1. This means that each additional constraint applied adds one additional nonzero
entry and so the final vector of coefficients will always have ϑ+ 2 nonzero entries. At every stage there are
exactly two choices for the next vector u′ρ. This is due to the ordered increase in the size of constraint vectors
in Bernstein form. Each constraint vector has two more nonzero entries than the previous one. Note that this
construction relies on the fact that rρuρ−1 6= 0 which is not established rigorously here.

Because the number of nonzero contiguous coefficients in the basis vectors of a smoothness constraint
system is given by the maximum smoothness of the system, it is possible to determine the support of the
basis vectors without solving the constraint system. It is sufficient to select all unique contiguous vectors
with ϑ+ 2 entries that have entries corresponding to functions on either side of the interface. Examples of
these one-dimensional basis vectors for various continuities are shown in fig. 16. Restricting the constraint
system to these nonzero entries will result in a rank one nullspace problem (see section 10.2 for an approach
to solving rank one nullspace problems).

25

C0 C1 C2

Figure 16: The nonzero coefficients of one-dimensional basis vectors on C0, C1, and C2 interfaces, respectively.
Each basis vector has ϑ+ 2 contiguous nonzero entries.

8.2 Interface basis vectors in two dimensions
Equation (76) can easily be generalized to an edge interface between faces with matching tensor product
bases along the interface. It can be seen that the constraints separate into separate systems with exactly the
same nonzero constraint values as would occur in the univariate setting repeated for each equivalence class. A
simple example of a constraint matrix is given in eq. (77). The indices corresponding to nonzero entries are
highlighted with gray boxes in fig. 17. In this setting, the results of eq. (76) can be applied directly to obtain
the nonzero entries of each basis vector that has nonzero indices in both faces. The indices of the nonzero
entries can similarly be obtained if one does not wish to solve for the values. The indices corresponding to
two representative basis vectors are shown in fig. 18. Each one was obtained by choosing three coefficients
from a row with contiguous indices with at least one coefficient on each side of the interface.

0 0 1 0 0 0 −1 0 0 0 0 0
0 2 −2 0 0 0 −2 2 0 0 0 0
0 0 0 0 0 1 0 0 0 −1 0 0
0 0 0 0 2 −2 0 0 0 −2 2 0

 (77)

0 1 2

3 4 5

6 7 8

9 10 11

Figure 17: Coefficients corresponding to the nonzero entries in the rows of the constraint matrix. Each grey block
surrounds the nonzero entries of a pair of rows in the matrix given in eq. (77).

Figure 18: The indices associated with nonzero entries of two representative basis vectors for eq. (77) are shown.
Each gray box indicates the nonzero entries in one basis vector.

If the Bernstein basis in each element does not match along the interface edge then the situation is
significantly more complex. Consider a system consisting of two elements, one with degree (1, 1) and the other
with degree (1, 2) connected by a C0 interface such that the bases do not match on the shared interface. This
is shown in fig. 19. The constraint matrix is given in eq. (78). A pictorial representation of the nonzero entries
associated with each row in the constraint matrix is given in fig. 19. The constraints are now fully coupled and
hence the one-dimensional result may not be directly applied to compute the indices of the nonzero entries of
the basis vectors. 0 −1 0 0 1 0 0 0 0 0

0 − 1
2 0 − 1

2 0 0 1 0 0 0
0 0 0 −1 0 0 0 0 1 0

 (78)

26

0 1

2 3

4 5

6 7

8 9

Figure 19: Indexing convention and coefficients corresponding to the nonzero entries in the constraint matrix
given in eq. (78). The mesh has two elements with degrees (1, 1) and (1, 2), connected by a C0 interface. Each
contiguous gray region surrounds the nonzero entries of a row in the matrix given in eq. (78).

For every interface in a Bézier mesh there is a natural association between the equivalence classes on one side
of the interface and the equivalence classes on the other side as described by eq. (70). This association allows
the results of eq. (76) to be generalized to the construction of interface basis vectors for higher-dimensional
elements with local tensor product polynomial bases.

For two elements a and b sharing an interface I = a ∩ b with assigned smoothness ϑ and having mapped
index sets GA = π

‖
I (ϕa(ID(a))) and GB = π

‖
I (ϕb(ID(b))) with intersection set GI = GA ∩ GB, there are ϑ+ 1

basis vectors with indices from both elements for every index in GI. The indices of the nonzero entries of
these basis vectors are defined for all integers 0 ≤ m ≤ ϑ. For every gI ∈ GI form the sets

IDa
gI,m =

⋃
G∈Aligna

gI

{
ia : g = ϕa(g(ia)) ∈ G,

∣∣π⊥I (g)
∣∣ ≤ m} , (79)

IDb
gI,ϑ−m =

⋃
G∈Alignb

gI

{
ib : g = ϕb(g(ib)) ∈ G,

∣∣π⊥I (g)
∣∣ ≤ ϑ−m} . (80)

The indices for the mth function associated with gI are given by the union of these two sets:

IDgI,m = IDa
gI,m ∪ IDb

gI,ϑ−m. (81)

Once the index set has been obtained, the nonzero coefficients associated with the basis vector may be
obtained by solving the smoothness constraints restricted to the index set. This also holds for C0 interfaces
between triangle-triangle or quad-triangle pairs. The set of all interface basis vectors with indices from both
elements adjacent to I is obtained by considering all possible values of gI and m.

The interface basis vectors with indices from both elements in fig. 19 are highlighted in fig. 20. These
basis vectors are in the nullspace of the constraint matrix in eq. (78). A slightly more complex example is
seen in fig. 21, where two faces with degrees p = (2, 2) and p = (3, 3) are separated by an interface with C1

continuity. The six basis vectors with indices from both faces are highlighted.
See appendix A.3 for a few simple exercises that provide greater insight into basis vectors and rank one

nullspace problems.

Figure 20: The basis vectors with indices from both elements adjacent to the interface in fig. 19. These basis
vectors span the null space of the constraint matrix given in eq. (78).

8.3 k-cell basis vector preliminaries
The construction of basis vectors on k-cells of dimension lower than an interface is more complex. Before
proceeding with the construction of basis vectors for an arbitrary k-cell ak we define several preliminary
concepts.

27

Figure 21: The basis vectors with indices from both faces adjacent to a C1 interface. The faces have degrees
p = (2, 2) and p = (3, 3).

8.3.1 Spokes and interface-element pairs

A spoke, denoted by ρ, is a pair containing an element E and an adjacent (k + 1)-cell bk+1, both of which are
adjacent to ak. More specifically, a spoke is defined as

ρ =
(
ak,E, bk+1) s.t. E ∈ ADJd(ak), bk+1 ∈ ADJk+1(ak), bk+1 ∈ ADJk+1(E). (82)

Each spoke ρ has a corresponding perpendicular interface-element pair, denoted by t, and defined as

t =
(
ak,E, I

)
s.t. E ∈ ADJd(ak), I ∈ ADJd−1(ak), I ∈ ADJd−1(E). (83)

In fig. 22a, the spokes adjacent to a vertex v are depicted as dashed lines.
We define several operations on spokes and interface-element pairs. The operator t⊥(ρ) gives the interface-

element pair perpendicular to a spoke on the same element and is defined as

t⊥(ak,E, bk+1) =
(
ak,E, I

)
s.t. I ∈ ADJd−1(E), s⊥E (I) ⊆ s‖E(bk+1). (84)

The operator ρ⊥(t) gives the spoke perpendicular to an interface-element pair on the same element and is
defined as

ρ⊥(ak,E, I) =
(
ak,E, bk+1) s.t. bk+1 ∈ ADJk+1(ak), bk+1 ∈ ADJk+1(E), s⊥E (I) ⊆ s‖E(bk+1). (85)

The operator t‖(t) gives the element-interface pair on the adjacent element sharing the same interface and is
defined as

t‖(ak,Ea, I) =
(
ak,Eb, I

)
s.t. Ea ∩ Eb = I,Eb ∈ ADJd(I). (86)

The operator ρ‖(ak, bk+1) gives the set of spokes that share the same (k + 1)-cell bk+1 and is defined as

ρ‖(ak, bk+1) =
{(

ak,E, bk+1) s.t. E ∈ ADJd(bk+1)
}
. (87)

We let ϑ⊥max(ρ) = ϑ⊥max(ak, bk+1) : ak, bk+1 ∈ ρ.

8.3.2 Inclusion distances

We assign a number called an inclusion distance to each spoke, denoted inc(ρ), which will be used to determine
the set of (k + 1)-cell basis vectors from each (k + 1)-cell adjacent to ak that are included in the k-cell basis
vector.

Each inclusion distance has the following properties:

• 0 ≤ inc(ρ) ≤ ϑ⊥max(ρ)

• inc(ρ) = ϑ⊥max(ρ)− inc(ρ⊥(t‖(t⊥(ρ))))

• ∀ {ρa, ρb} ⊆ ρ‖(bk+1), inc(ρa) = inc(ρb).

28

For the construction of a k-cell basis vector on a d-dimensional mesh, there are (d−k) spokes that share each
element adjacent to the k-cell. We begin the process of constructing a set of inclusion distances for a k-cell ak by
choosing one of these elements E and then choosing (d−k) inclusion distances inc1...incd−k, one for each of the
spokes on E, ρj , j ∈ {1, ..., d− k} ,E ∈ ρj , that satisfy the requirement 0 ≤ incj ≤ ϑ⊥max(ρj), j ∈ {1, ..., d− k}.
The set of inclusion distances for each (k + 1)-cell adjacent to ak are fixed by the choice of inc1...incd−k on E.
We denote the set of inclusion distances for all (k + 1)-cells adjacent to ak by INCinc1,...,incd−k and denote the
value associated with the (k + 1)-cell bk+1 by INCinc1,...,incd−k

bk+1 .
In fig. 22b, a set of inclusion distances have been chosen for the spokes adjacent to a vertex v, on a system

where each face has a biquadratic basis, and the continuity on each edge is as indicated.

e0

e1

e2

e3

ρ1

ρ8

ρ3 ρ2

ρ4

ρ5

ρ6 ρ7

f0f1

f2 f3

v

(a) Each spoke ρi on a regular vertex v
in a two-dimensional mesh is depicted
as a dashed line.

1

1

0 0
0

0
0 0

C0

C1

C0

C1

(b) An example of a choice of inclu-
sion distances, labeled adjacent to each
spoke.

Figure 22: Examples of spokes and inclusion distances.

8.3.3 Alignment sets

We define the alignment sets on the k-cell ak. A k-dimensional Bernstein basis is placed in Ω̂ak with polynomial
degree pak equal to the minimum on the adjacent elements in each parametric direction parallel to ak, and for
each i ∈ ID(ak) we construct the sets of aligned equivalence classes, contained in Alignak,i (see section 7.4).
For each i ∈ ID(ak) there exists a set of (k + 1)-cell basis vectors HBVi(ak) such that

HBVi(ak) =
{
n ∈ HBV(ak) : G(ID(n)) ⊆ Alignak,i

}
(88)

where
HBV(ak) =

⋃
bk+1∈ADJk+1(ak)

BV(bk+1). (89)

8.4 Overview of k-cell basis vector construction
In general, the algorithm for constructing k-cell basis vectors is recursive. It assumes the basis vectors on
the adjacent (k + 1)-cells have already been constructed, the base case being the d-cell basis vectors (the
Bernstein functions). Each k-cell basis vector is a linear combination of (k + 1)-cell basis vectors on adjacent
(k + 1)-cells. Composite k-cell basis vectors are formed by taking a linear combination of multiple (k + 1)-cell
basis vectors, while simple k-cell basis vectors are formed from just one (k + 1)-cell basis vector.

The algorithm for constructing the basis vectors on a k-cell ak is summarized as follows:

1. Construct the basis vectors on adjacent (k + 1)-cells bk+1 ∈ ADJk+1(ak) by calling this algorithm
recursively. The base case is a d-cell, where the basis vectors are the Bernstein functions which span the
Bernstein space assigned to the element.

2. Composite basis vectors are constructed by considering all possible sets of inclusion distances
INCinc1,...,incd−k (section 8.3.2) and all possible alignment indices i ∈ ID(ak) (section 8.3.3) on ak. For
each,

29

• Collect the set of (k + 1)-cell basis vectors associated with the given set of inclusion distances and
alignment index. (section 8.5.1 and appendix C.1)

• The index set of the new k-cell basis vector is the union of the index sets of this collection of
(k + 1)-cell basis vectors.

3. Each simple k-cell basis vector is constructed from a single (k + 1)-cell basis vector on an adjacent
(k + 1)-cell, one for each (k + 1)-cell basis vector whose index set is not a subset of a composite k-cell
basis vector (section 8.5.2 and appendix C.2).

4. If desired, once the index set for each k-cell basis vector has been obtained, the constraint system can
be solved to obtain the coefficient values and construct the basis vector.

8.5 Vertex basis vectors in two dimensions
We illustrate the algorithm by constructing two-dimensional basis vectors on vertices. The algorithm for
arbitrary dimensions is found in appendix C. Examples of k-cell basis vectors of various dimension, on both
two- and three-dimensional meshes are seen in figs. 26 to 32.

8.5.1 Composite vertex basis vectors

The composite basis vectors on a vertex v are formed from multiple adjacent edge basis vectors. Each
composite vertex basis vector is associated with a set of inclusion distances INCinc1,inc2 (section 8.3.2) and
alignment index i ∈ ID(v) (section 8.3.3). In the case of a vertex, there is only one alignment index. The
spokes (section 8.3.1) in this case consist of every edge-face pair adjacent to the vertex v. In fig. 23a we see
a two-dimensional mesh with four elements. A set of spokes on the edges adjacent to the center vertex are
depicted in fig. 23b. We assign an inclusion distance to every spoke adjacent to the vertex v, as described in
section 8.3.2, beginning with two initial inclusion distance choices denoted inc1 and inc2 (corresponding to the
spokes ρ1 and ρ2, respectively), that satisfy the requirement 0 ≤ incj ≤ ϑ⊥max(ρj), j ∈ {1, 2}. The inclusion
distances associated with every spoke adjacent to v, denoted INCinc1,inc2 , are fixed by the choice of inc1 and
inc2, as determined by the properties of inclusion distances outlined in section 8.3.2. One possible set of
inclusion distances for the mesh in fig. 23a is shown in fig. 23c. The inclusion distance associated with a
particular edge e ∈ ADJ1(v) is denoted by INCinc1,inc2

e .
We place indexed submesh domains over each pair of elements adjacent to each edge adjacent to v (with

their origins at v), and partition the mapped index sets of the basis vectors associated with each edge e into
equivalence classes with respect to the parallel equivalence relation on the edge BG(e)/$‖e . We then identify
the equivalence classes for which the minimum projection onto the edge is less than or equal to INCinc1,inc2

e :

EBG‖inc1,inc2
(e) =

{
EBG(e) ∈ BG(e)/$‖e : min

g∈G

(
π‖e (g)

)
≤ INCinc1,inc2

e ,G ∈ EBG(e)
}
. (90)

An example of these equivalence classes is shown in fig. 24.
Let e⊥0 ∈ PC(v, e), and e⊥1 ∈ PC(v, e). (PC is defined in section 3.1.1.) We form the sets containing all

indices whose associated cell is adjacent to e and whose associated submesh Greville point is a part of elements
of EBG‖inc1,inc2

(e⊥0) and EBG‖inc1,inc2
(e⊥1)

ID⊥e⊥0 =
{

i ∈ ID(f) : f ∈ ADJ2(e), g(i) ∈ G ∈ EBG ∈ EBG‖inc1,inc2
(e⊥0)

}
, (91)

ID⊥e⊥1 =
{

i ∈ ID(f) : f ∈ ADJ2(e), g(i) ∈ G ∈ EBG ∈ EBG‖inc1,inc2
(e⊥1)

}
. (92)

We form the set of Greville points that are fixed points of the parallel projectors onto e⊥0 or e⊥1 :

G⊥ =
{

g(i) : g(i) = π⊥e (g(i)), i ∈ ID⊥e⊥0
}
∪
{

g(i) : g(i) = π⊥e (g(i)), i ∈ ID⊥e⊥1
}
. (93)

We take all basis vectors whose projections onto the edges perpendicular to e lie in G⊥:

BG⊥inc1,inc2
(e) =

{
G ∈ EBG ∈ EBG‖inc1,inc2

(e) : ∀g∈G π⊥e (g) ⊆ G⊥
}
. (94)

30

In fig. 25, we see an example of these basis vector subsets marked with dotted lines.
The set of indices associated with BG⊥inc1,inc2

(e) is

IDinc1,inc2
e =

⋃
G∈BG⊥inc1,inc2

(e)

{
i ∈ ID(f) : f ∈ ADJ2(e), g(i) ∈ G

}
. (95)

The full set of indices associated with inc0 and inc1 is

IDinc1,inc2
v =

⋃
e∈ADJ1(v)

IDinc1,inc2
e . (96)

In the case of a vertex, there is only one alignment index, so the set IDinc1,inc2
v represents the index set of the

composite basis vector. Note that for higher-dimensional cells, one additional step is required to find the set
associated with a given alignment index and inclusion distances (see eq. (206) in appendix C.1).

We consider all possible values of inc0 and inc1 on v to construct the set of all composite vertex basis
vectors. We use BV′′(v) to represent this set. The full set of indices contained in this set is

UIDv =
⋃

n∈BV′′(v)

ID(n). (97)

An example of a set of composite vertex basis vectors is shown in fig. 26.

8.5.2 Simple vertex basis vectors

Each simple vertex basis vector is formed from a single edge basis vector on an adjacent edge, one for each
edge basis vector whose index set is not subsumed by UIDv. We use BV′(v) to represent this set:

BV′(v) =
⋃

e∈ADJk+1(v)

{n ∈ BV(e) : ID(n) * UIDv} . (98)

An example of a set of simple vertex basis vectors is shown in fig. 27.

8.5.3 The full set of vertex basis vectors

The full set of vertex basis vectors is found by combining the set of composite vertex basis vectors with the
set of simple vertex basis vectors:

BV(v) = BV′′(v) ∪ BV′(v). (99)
Once the index set for each vertex basis vector has been obtained, the constraint system can be solved to
obtain the coefficient values and construct the basis vector.

(a) A two-dimensional mesh with four
cells. Three cells are biquadratic and
one is bicubic. All edges are C1.

e0

e1

e2

e3

ρ1

ρ2
v

(b) We select an intitial element E on
the top-left, and label the two initial
spokes ρ1 and ρ2.

e0

e1

e2

e3

1

1

0 0
0

0
1 1

v

(c) We choose inc(ρ1) = 0 and
inc(ρ2) = 0, thus determining the in-
clusion distances on all the spokes.

Figure 23: Choosing an initial element E and two initial spokes ρ1 and ρ2, and choosing the inclusion distances
which uniquely identify a vertex basis vector. The fully constructed basis vector is seen in fig. 26b.

31

e0

e1

e2

e3

(a) EBG‖inc1,inc2
(e0)

e0

e1

e2

e3

(b) EBG‖inc1,inc2
(e1)

e0

e1

e2

e3

(c) EBG‖inc1,inc2
(e2)

e0

e1

e2

e3

(d) EBG‖inc1,inc2
(e3)

Figure 24: The basis vectors contained in EBG‖inc1,inc2
(ei) for each edge ei, i ∈ {0, 1, 2, 3}, the sets of equivalence

classes for which the minimum projection onto the edge is less than or equal to INCinc1,inc2
ei . Overlapping regions

are depicted with darker gray. The fully constructed basis vector is seen in fig. 26b.

e0

e1

e2

e3

(a) BG⊥inc1,inc2
(e0)

e0

e1

e2

e3

(b) BG⊥inc1,inc2
(e1)

e0

e1

e2

e3

(c) BG⊥inc1,inc2
(e2)

e0

e1

e2

e3

(d) BG⊥inc1,inc2
(e3)

Figure 25: The basis vectors contained in BG⊥inc1,inc2 (ei) for each edge ei, i ∈ {0, 1, 2, 3}. The dotted line represents
the span of indices whose projections onto the edges perpendicular to ei lie in G⊥. Overlapping regions are
depicted with darker gray. The fully constructed basis vector is seen in fig. 26b.

(a) The vertex basis vector
with index support ID0,1

v .
(b) The vertex basis vector
with index support ID0,0

v .
(c) The vertex basis vector
with index support ID1,1

v .
(d) The vertex basis vector
with index support ID1,0

v .

Figure 26: The composite basis vectors on a vertex adjacent to four quadrilateral cells, three with degree p = (2, 2)
and one with degree p = (3, 3). The continuity on the interfaces is C1.

32

Figure 27: The simple basis vectors on a vertex adjacent to four quadrilateral cells, three with degree p = (2, 2) and
one with degree p = (3, 3). The continuity on the interfaces is C1. Overlapping regions are depicted with darker
gray. Each simple vertex basis vector is constructed from an adjacent edge basis vector that is not subsumed by a
composite vertex basis vector.

Figure 28: Examples of composite basis vectors on extraordinary vertices. On the left we see a valence-3
extraordinary vertex where all the cells have degree p = (2, 2). On the right we see a valence-5 extraordinary
vertex where some cells have degree p = (2, 2) and others have degree p = (3, 3). In each case, the continuity of
each edge is C0.

Figure 29: Basis vectors on a C0 interface between two hexahedron on a volumetric mesh. The element on the left
is linear and the element on the right is cubic. This results in four alignment sets, and one interface-overlapping
basis vector per alignment index.

Figure 30: Basis vectors on a C1 interface between two hexahedron on a volumetric mesh. The two elements are
each quadratic in the direction normal to the interface, and then are given degrees (1, 2) and (2, 1), respectively,
in the directions parallel to the interface. This results in four alignment sets, and two interface-overlapping basis
vectors per alignment index.

33

Figure 31: Examples of composite basis vectors on an edge adjacent to four hexahedron on a volumetric mesh.
Three elements are quadratic and one is cubic. The continuity is C1 everywhere. These (d− 2)-cell basis vectors
are the volumetric analog to the two-dimensional vertex basis vector shown in fig. 26b, one for each alignment
index along the edge.

(a) Seven linear and one
quadratic hexahedron meet at
a regular vertex. The continu-
ity is C0 everywhere.

(b) Three linear and one
quadratic hexahedron meet at
an extraordinary vertex. The
continuity is C0 everywhere.

(c) Seven quadratic and one cu-
bic hexahedron meet at a reg-
ular vertex. The continuity is
C1 everywhere.

(d) Seven quadratic and one cu-
bic hexahedron meet at a reg-
ular vertex. The continuity is
C1 everywhere.

Figure 32: Several examples of composite vertex basis vectors on volumetric meshes. The degree and continuity for
each example is indicated. Figure 32b is an example of an extraordinary vertex on a volumetric mesh, constructed
by filling a tetrahedron with hexahedral cells. Figure 32c is analogous to the two-dimensional example in fig. 26a.
In fig. 32d notice the far corner Bernstein index is missing on the cubic cell, analogous to the two-dimensional
example in fig. 26d.

8.6 Subordinate basis vectors
By definition (see eq. (34)), the constraint set for a k-cell c, R(c), is a superset of the constraint set of any
higher dimensional cell having c in its boundary. Consequently, the basis vectors in BV(c) can be expressed
locally in terms of the basis vectors associated with the (k + 1)-cells having c in their shared boundary. Given
n ∈ BV(c), we define the set of (k + 1)-cell basis vectors associated with n as

SBV(n) =

m ∈
 ⋃

a∈ADJk+1(c)

BV(a)

 : ID(m) ⊆ ID(n)

 (100)

and say that the members of SBV(n) are subordinate basis vectors or basis vectors subordinate to n. The
subordinate basis vectors of a set of basis vectors is also defined as SBV(BV(c)) =

⋃
n∈BV(c) SBV(n).

We also define the subset of basis vectors subordinate to n that are also basis vectors on an adjacent cell c
as

SBVc(n) = SBV(n) ∩ BV(c). (101)

An example of subordinate basis vectors in one dimension are shown in fig. 33.

34

ve0 e1

n ∈ BV(v)

v

SBV(n)

ve0 e1

SBVe0 (n)

ve0 e1

SBVe1 (n)

Figure 33: An example of subordinate basis vectors in one dimension. The set of subordinate basis vectors of n is
SBV(n), and SBVei(n), i ∈ {0, 1} are the subsets of subordinate basis vectors associated with edges e0 and e1,
respectively.

8.7 Basis vector boundaries
The U-spline algorithm relies on relationships between basis vectors associated with adjacent topological
features in order to construct basis vectors from the global set. These relationships are most conveniently
expressed by introducing a notion of boundary to the mapped indices associated with nonzero entries in the
basis vector.

It has been shown that basis vectors can be represented in terms of the basis vectors associated with
higher-dimensional adjacent cells. Having constructed a basis vector, n ∈ BV(ak), for a k-cell, ak, we loosely
define the boundary with respect to an adjacent (k + 1)-cell, bk+1, as the most distant elements chosen
from the set of subordinate basis vectors SBVbk+1(n). We will denote this set by BDbk+1(n) and make the
definition more precise. We first give definitions for the three cases relevant to one and two dimensions and
then define basis vector boundaries in arbitrary dimension.

8.7.1 Basis vector boundaries in one dimension

For the case of a basis vector nv ∈ BV(v) associated with a vertex v in the one-dimensional setting, we begin
by defining an indexed submesh domain over the two edges adjacent to the vertex, such that the origin lies at
the vertex, and the associated index mappings are φe for each edge e. Then, the boundary with respect to
the edge e is given by

BDe(nv) =
{
q ∈ SBVe(nv) : max

i∈ID(q)
‖φe(i)‖2 = qmax

}
(102)

where
qmax = max

q∈SBVe(nv)
max

i∈ID(q)
‖φe(i)‖2 . (103)

In fig. 34 we see a basis vector nv on a vertex on a one-dimensional mesh. Associated with each adjacent edge
e1 and e2 is a boundary set, BDe1(nv) and BDe2(nv), which contains the subordinate basis vector that makes
up the boundary in the direction of the respective edge. These are represented as black circles. The full set of
boundaries is obtained by taking the union of all boundary sets generated by the edges adjacent to v:

BD(nv) =
⋃

e∈ADJ1(v)

BDe(nv). (104)

e1 e2

BDe1 (nv)
nv

BDe2 (nv)

Figure 34: An example of basis vector boundaries on a vertex null vector on a one-dimensional mesh.

8.7.2 Basis vector boundaries in two dimensions

In a two-dimensional setting we must consider the boundaries of edge basis vectors and vertex basis vectors.
The boundaries of edge basis vectors are constructed from the basis vectors of the adjacent face systems, which
are just the standard Bernstein basis functions. Given an edge e ∈ ADJ1(f) with basis vector ne ∈ BV(e)

35

adjacent to a face f, the subordinate subset is SBVf(ne) and the associated index set is ID(SBVf(ne)). We
form the mapped points associated with ID(SBVf(ne)) and partition it with respect to the projection onto
the edge e:

G‖ =
{
φf(i), i ∈ ID(SBVf(ne))

}
/$‖e . (105)

The boundary set is formed by taking the index associated with the most distant point in each equivalence
class:

BDf(ne) =
⋃

G∈G‖

{
i ∈ ID(SBVf(ne)) : π⊥e (φf(i)) = max

g∈G
π⊥e (g)

}
. (106)

Again, the full boundary is given by

BD(ne) =
⋃

f∈ADJ2(e)

BDf(ne). (107)

The boundary set for a vertex basis vector nv in the two-dimensional setting is formed from the basis
vectors associated with an edge e adjacent to the vertex v. The construction is similar to the construction
presented for the boundary of edge basis vectors. We form the set containing the set of mapped index points
for each vector in SBVe(nv):

G(SBVe(nv)) = {{φe(i), i ∈ ID(ne)} ,ne ∈ SBVe(nv)} . (108)

The chart φe is chosen so that both elements adjacent to the edge e are mapped consistently and that v
lies at the origin. We partition the set of Greville point sets into equivalence classes with respect to the
projection perpendicular to the edge e and form the boundary set by taking the most distant element from
each equivalence class. Given an equivalence class H ∈ G(SBVe(nv))/$⊥e , we define the maximum of this
equivalence class as the set of points whose projection onto the line in the direction of e is greatest:

max H = G ∈ H : max
g∈G

π‖e (g) = max
G′∈H

max
g′∈G′

π‖e (g′), (109)

BDe(nv) =
{
ne ∈ SBVe(nv) : φe(ID(ne)) = max H,φe(ID(ne)) ∈ H,H ∈ G(SBVe(nv))/$⊥e

}
. (110)

In fig. 35 a vertex basis vector on a two-dimensional mesh with uniform degree is seen on the left. An
equivalence class with respect to the projection perpendicular to the edge e contains two subordinate basis
vectors, as seen in the middle. The rightmost subordinate basis vector from the equivalence class makes up
the basis vector boundary, as seen on the right. Similarly, in fig. 36 on the left we see a vertex basis vector on
a two-dimensional mesh with mixed degree. In this case there are two equivalence classes with respect to the
projection perpendicular to the edge e, each of which contain two subordinate basis vectors. The boundary set
is made up of the rightmost subordinate basis vectors from each equivalence class, as seen on the right. The
full boundary is once again obtained by uniting the boundary sets associated with every edge adjacent to v

BD(nv) =
⋃

e∈ADJ1(v)

BDe(nv). (111)

8.7.3 Basis vector boundaries in arbitrary dimensions

The boundary set for a k-cell basis vector nak ∈ BV(ak) in the d-dimensional setting is formed from the basis
vectors associated with a (k+1)-cell bk+1 adjacent to ak, bk+1 ∈ ADJk+1(ak). The description for constructing
the boundary set for a basis vector in arbitrary dimensions is a direct generalization of the description in
section 8.7.2 for vertex basis vectors in two dimensions, by taking eqs. (108) to (111) and replacing the vertex
v with ak and the edge e with bk+1. In the general description, the chart φbk+1 is chosen so that all elements
adjacent to bk+1 are mapped consistently and that one of the vertices adjacent to ak lies at the origin.

36

e

Coefficients for vertex
basis vector nv

e

Single equivalence class
in SBVe(nv)/$⊥e

e

Basis vector boundary
BDe(nv)

Figure 35: The boundary of a vertex basis vector nv on edge e, on a quadratic mesh with C1 continuity. In this
case, there is only one equivalence class, which contains two subordinate basis vectors. The rightmost subordinate
basis vector from the equivalence class makes up the basis vector boundary.

e

Coefficients of vertex
basis vector nv

e

First equivalence class
in SBVe(nv)/$⊥e

e

Second equivalence class
in SBVe(nv)/$⊥e

e

Basis vector boundary
BDe(nv)

Figure 36: In the presence of local variation in degree, the boundary of a vertex basis vector nv on edge e may be
determined from more than one equivalence class. The rightmost subordinate basis vectors from each equivalence
class make up the basis vector boundary. All the interfaces have C1 continuity.

9 The U-spline mesh
As described previously in section 6, a spline space can be constructed directly from the nullspace of the
global constraint matrix R(B). However, for large meshes, analyzing and constructing a basis for the global
nullspace is usually not computationally feasible.

To overcome this issue, we will instead seek to build the index sets corresponding to k-cell basis vectors
as described in section 8 and arrange them into basis vectors for U-spline basis functions as described in
section 10. The nullspace problem associated with each U-spline basis function will be rank one in all cases.

To simplify the construction of a U-spline basis, we define a class of admissible Bézier meshes, which we
call U-spline meshes and denote by U. A U-spline mesh is a Bézier mesh with admissibility constraints placed
on the layout of cells, the degree, and the smoothness of interfaces. Admissibility constraints are imposed
through appropriate separation and grading conditions on degree and continuity transitions throughout the
Bézier mesh. The mathematical properties of the corresponding admissible U-spline space U can be controlled
a priori by specifying the properties of the underlying Bézier mesh topology.

Specifically, admissibility ensures that the following properties are satisfied:

• The index sets of k-cell basis vectors can be constructed directly through topological equivalence relations
based on the derivative ordering property of a Bernstein-like basis on each cell and mesh topology local
to the k-cell as described in section 8,

• The basis vector that defines each U-spline basis function can be determined from the relationships
between a set of k-cell basis vectors to determine the indices of nonzero values. Coefficient values
can then be determined by solving a relatively small rank one nullspace problem. The details of this
approach are described in section 8 and section 10.1.

• The detailed mathematical properties satisfied by the U-spline space are described in section 11.

37

The admissibility conditions are written in terms of ribbons. A ribbon r is an ordered set of interfaces
from a Bézier mesh segment length is controlled by both the degree and continuity of adjacent elements
and interfaces, respectively. Ribbons are used as a measuring instrument on a Bézier mesh to quantify the
separation distance between local variations in degree and continuity.

We note, however, that we have studied U-spline basis functions constructed over Bézier meshes that are
more complex than those presented here and plan to present more generalized admissibility conditions in a
forthcoming work. We anticipate that certain admissibility requirements will always be necessary to construct
spline spaces with desirable mathematical properties.

9.1 Ribbons
A ribbon r =

{
Ih, o, t

}
where the tail t =

[
I0, I1, ..., I|t|−1

]
, is composed of |t| consecutive interfaces Ij ,

originating at an origin (d − 2)-cell o, and Ih is the head interface that is opposite the tail t. The origin
(d− 2)-cell o must be regular and interior to the mesh. We say a ribbon with |t| interfaces in the tail is a
ribbon of length |t|. The skeleton of a ribbon, denoted by skel(r), is the array of |t|+ 1 (d− 2)-cells which are
attached to the |t| interfaces in the tail and parallel to the origin (d− 2)-cell o, including the origin (d− 2)-cell.
The fact that the definition of a ribbon is defined using (d−2)-cells prevents a meaningful definition of ribbons
for univariate U-splines. Fortunately, all univariate U-splines of maximal continuity are admissible and so this
is not a problem.

Figure 37 illustrates a ribbon composed of several consecutive interfaces in both the two- and three-
dimensional mesh cases. A small solid circle or sphere near the head of the ribbon represents an initial
Bernstein coefficient, adjacent to which is the origin (d− 2)-cell o. The interfaces in the tail extend to the
right. The head of the ribbon Ih is the interface immediately opposite the tail.

o

Ih I0 I1

Ribbon tail
Ribbon origin o
Ribbon head Ih Ribbon head Ih

Ribbon origin o
Ribbon tail

Figure 37: An example of a ribbon on a two-dimensional mesh (left) and on a three-dimensional mesh (right). In
each case, a small solid circle or sphere near the head of the ribbon represents an initial Bernstein coefficient.

9.1.1 Maximum coupling length

A ribbon r can originate from any interior regular (d− 2)-cell in a U-spline mesh, and can be of any length
|t| , t ∈ r. However, we will primarily use ribbons to measure the maximum distance, measured by the length
of the ribbon, between a specified Bernstein coefficient and any other coefficient coupled to it. We call a ribbon
constructed in this way a ribbon of maximum coupling length. In this case, the length of the tail is determined
by how far that coefficient can couple with neighboring coefficients in the direction of an interface which is
adjacent to the origin (d− 2)-cell (this becomes the first interface in the tail). Algorithm 2 in appendix D
describes the procedure used to determine the interfaces in the tail of a ribbon of maximum coupling length.
A ribbon of maximum coupling length is said to be truncated if the length of the ribbon is shortened due to
reduced continuity on the final interface encountered by the tail.

38

See appendix A.4 for an intuitive example of constructing a ribbon of maximum coupling length.

9.1.2 Continuity transitions

A continuity transition ribbon (designated by cr) is a ribbon of maximum coupling length with the additional
property that ϑIh > ϑ[t]0 . An example of this type of ribbon for both two and three dimensions is seen in
fig. 38. Two perpendicular continuity transition ribbons cri and crj where i 6= j and cri is length |ti| and crj is
length |tj |, are said to be intersecting if they share a (d− 2)-cell (i.e., skel(cri) ∩ skel(crj) 6= ∅). A tail-to-tail
intersection occurs when the shared (d− 2)-cell is w|ti|+1 in cri and w|tj |+1 in crj . A head-to-tail intersection
occurs when the shared (d− 2)-cell is w0 in cri and w|tj |+1 in crj , or vice-versa. The minimum perpendicular
degree of a continuity transition ribbon is defined as p⊥min(cr) = mink(p⊥min([t]k)).

9.1.3 Degree transitions

A degree transition ribbon (designated by dr) is a ribbon of maximum coupling length with the additional
property that p⊥min(Ih) < p⊥min([t]0). An example of this type of ribbon for both two and three dimensions is
seen in fig. 39.

Ribbon of maximum coupling length
Ribbon origin
Continuity C1
Continuity C2

C1
C0 C0 C0

Figure 38: Continuity transition ribbons on a two-dimensional mesh (left) and a three-dimensional mesh (right).
In each case, the ribbon originates at a (d − 2)-cell where a continuity transition occurs, and proceeds in the
direction of lower continuity. All elements on both meshes are quadratic.

Ribbon of maximum coupling length
Ribbon origin
Continuity C1

Figure 39: Degree transition ribbons on a two-dimensional mesh (left) and a three-dimensional mesh (right). A
degree transition ribbon is a ribbon of maximum coupling length with the additional property that p⊥min(Ih) <
p⊥min([t]0).

39

9.2 Admissible layouts
As described previously, a U-spline mesh U is a Bézier mesh with an admissible layout. The admissibility
conditions presented here were selected for simplicity, while still ensuring that the resulting U-spline spaces
possess the requisite mathematical properties. It should be noted, however, that various generalizations of
these conditions exist but are significantly more complex to implement and understand so are omitted from
this work. We will explore these generalized conditions in a forthcoming work. For our purposes, an admissible
layout satisfies the following three simple constraints:

• ϑ-separation: If two perpendicular continuity transition ribbons cri and crj intersect (that is, share
a common (d − 2)-cell), then it must be a tail-to-tail intersection or a head-to-tail intersection. If a
truncated continuity transition ribbon meets with a non-truncated continuity transition ribbon tail-to-
tail, then ϑIhi < C∞ or ϑIhj < C∞. If two truncated continuity transition ribbons meet tail-to-tail, then
ϑIhi < C∞ and ϑIhj < C∞.

• p-separation: For all continuity transition ribbons cri, if p⊥min(Ih) > ϑIh , then p⊥min(cri) > ϑIh and if
p⊥min(Ih) = ϑIh , then p⊥min(cri) ≥ ϑIh . Also, no degree transition ribbon dr perpendicular to cri may
intersect oi, the origin of cri.

• ϑ-grading: A creased (d− 2)-cell is any (d− 2)-cell in a Bézier mesh where all adjacent interfaces are
creased to C0 or C−1. For a creased (d− 2)-cell w and a set of continuity transition ribbons {crj} that all
terminate at w, and given any cr ∈ {crj} of length |t| where wj = ADJd−2(Ij)∩ADJd−2(Ij−1), Ij ∈ t ∈ cr,
then ϑIj ≤ ϑj , where ϑj is defined recursively as ϑ|t|−1 = 0 and ϑj−1 = ϑj + βj , j = |t| − 1, . . . , 1 where

βj =
{

0 if ϑ⊥max(wj) = C∞

1 otherwise
(112)

and
ϑ⊥max(wj) = max

I⊥∈ADJd−1(wj)\{Ij ,Ij−1}
ϑI⊥ . (113)

Additionally, on three-dimensional meshes, given three edges on a hexahedral element E adjacent to
vertex v ∈ ADJ0(E), (without loss of generality we label these edges {e0, e1, e2} = ADJ1(E) ∩ ADJ1(v)),
if e0 is extraordinary, then all faces adjacent to v and perpendicular to e1 and e2, i.e.,

f ∈
⋃

e′∈{e1,e2}

ADJ2(v) ∩ ADJ2 ◦ ADJd(e′) \ ADJ2(e′), (114)

must be creased. This three-dimensional requirement is illustrated in fig. 45b. Note that all extraordinary
(d− 2)-cells are required to be creased, but regular (d− 2)-cells may also be creased as seen in fig. 41.

Examples of two-dimensional mesh layouts that satisfy the separation and grading admissibility conditions
are shown in figs. 40 and 41 and three-dimensional examples are shown in figs. 42 to 45.

The ϑ-separation condition is demonstrated in fig. 40a and similarly in figs. 42a and 43 where we see
admissible configurations with ribbons that do not intersect except tail-to-tail or head-to-tail. We note that
ribbons on volumetric meshes that cross in the middle of a face are not considered intersecting, and are
admissible.

A common application of the p-separation condition is seen in figs. 40c and 42b where a transition to lower
continuity must be sufficiently separated from a transition to lower perpendicular degree. Also notable is the
p-separation condition demonstrated in figs. 40b and 44 where a degree transition ribbon cannot be permitted
to intersect the origin of a continuity transition.

The ϑ-grading condition is demonstrated in Figures 41 and 45 where we see several mesh configurations
that include a creased (d − 2)-cell. Extraordinary (d − 2)-cells are always required to be creased, but the
same ϑ-grading conditions also apply to the interfaces near a regular (d− 2)-cell if all adjacent interfaces are
creased. Unstructured volumetric configurations often contain many extraordinary edges, as the hex-meshed
tetrahedral topology demonstrates in fig. 45a. When an extraordinary edge is near a boundary on a volumetric
mesh, sometimes additional faces must be creased as is demonstrated in fig. 45b. In this case, an additional

40

face to the left of the extraordinary edge was required to be creased (despite itself being adjacent to only
regular edges). This is because this face is perpendicular to an edge which, in turn, is perpendicular to the
extraordinary edge (see eq. (114)).

Ribbon of maximum coupling length

Continuity C1
Continuity C0

(a)

Ribbon of maximum coupling length
Continuity C1

Continuity C3

(b)

Ribbon of maximum coupling length

Continuity C1
Continuity C0

(c)

Figure 40: Examples of admissible layouts that satisfy ϑ- and p-separation conditions. On the top left, two
continuity transition ribbons meet tail-to-tail. On the top right, a degree transition ribbon dr is sufficently
separated from a continuity transition ribbon cr to avoid intersection with the origin of cr. On the bottom, a
degree transition is sufficiently separated from the head of a continuity transition ribbon cr so that p⊥min(cr) > ϑIh .

9.3 Classification
We denote a class of U-spline meshes by U , with a superscript that is used to identify key Bézier mesh
properties which are common to the meshes contained in the class (see table 1). Using this superscript notation,
U-spline meshes sharing certain characteristics can be grouped and denoted by, for example URHKP , which
would denote all structured U-spline meshes where variations in mesh size, smoothness, and degree propagate
globally. Examples include the tensor product splines such as B-splines and NURBS. The U-spline class
UrHKP may not admit a global parameterization due to the possible presence of, for example, extraordinary
vertices, but all variations in mesh size, smoothness, and degree propagate globally. Spline meshes in this
class include unstructured finite element meshes composed of linear elements and multi-patch NURBS meshes.
Analysis-suitable T-spline (ASTS) meshes are in UrhkP . We note that in one dimension, the most unstructured
class possible is URhKP .

In table 1, this superscript notation is related to underlying Bézier mesh characteristics.

41

Ribbon of maximum coupling length

Continuity C1
Continuity C0

Continuity C2

Figure 41: Example of two admissible layouts that satisfy the ϑ-grading condition. Note that while extraordinary
(d− 2)-cells will always be creased, a creased (d− 2)-cell may also be regular as shown in the example on the right.

(a) Example of an admissible cubic volumetric mesh that
satisfies the ϑ-separation condition. The marked interfaces
on the left are C0, the middle are C1, and the right are C3.
All other interfaces are C2.

(b) An admissible mesh that satisfies the p-separation con-
dition. The marked interfaces on the right are C0, and the
others are C1. This mesh is quadratic everywhere except for
the cells on the far end, which are set to p = (2, 1, 1), as
depicted by the small solid spheres.

Figure 42: Examples of admissible volumetric meshes that satisfy ϑ- and p-separation conditions. The example on
the left contains both a tail-to-tail and head-to-tail ribbon intersection. Ribbons that cross at the center of a face
are not considered intersecting and are admissible. The example on the right contains a continuity transition from
C1 to C0, sufficiently far from the degree transition to prevent the continuity transition ribbons from overlapping
the cells with lower degree.

42

(a) A subset of faces creased to C0 are
marked.

(b) A subset of faces creased to C0 are
marked.

(c) A subset of faces creased to C0 are
marked.

(d) All faces creased to C0 are shown
together.

(e) The continuity transition ribbons
are shown alone.

(f) The complete admissible volumetric
mesh, including the continuity transi-
tion ribbons.

Figure 43: An example of an admissible volumetric mesh that satisfies the ϑ-separation condition. All elements
are quadratic and all faces have continuity C1 except for three mutually orthogonal planes of faces creased to C0.
For clarity, various parts of the mesh are shown separately before they are shown together. Notice the tail-to-tail
and head-to-tail ribbon intersections, which are admissible. Ribbons that cross at the center of a face are not
considered intersecting and are admissible.

43

(a) Front view. (b) Side view.

Figure 44: An admissible mesh that satisfies the p-separation condition. This mesh is cubic C1 everywhere except
for five cells on the far side, which have been set to p = (3, 2, 2), and a few faces on the near side which are set to
C3 (supersmooth). The degree transition ribbons may be seen extending away from the cells with lower degree.
Observe that these transition ribbons do not intersect the edge where a supersmooth continuity transition occurs,
thus maintaining the admissibility of the mesh. Both the front view and side view of the mesh are shown.

(a) (b)

Figure 45: Two quadratic volumetric meshes that satisfy the ϑ-grading condition. The mesh on the left was
constructed by filling a tetrahedron with hexahedral cells. All faces adjacent to an extraordinary edge must be
creased to C0, but there are cases where a face near but not directly adjacent to an extraordinary edge must also
be creased, as seen in the example on the right (see also eq. (114)).

44

• R: A global parameterization is possible.

– It is possible to construct a submesh domain ΩU and an
associated coordinate system αK on the U-spline mesh U.

• r: A global parameterization may not be possible.

• H: Supersmooth interfaces are not permitted in the mesh.

– All interfaces in the mesh have continuity less than p⊥min(I).
– ∀I ∈ U, ϑI < p⊥min(I).

• h: Supersmooth interfaces are permitted in the mesh.

• K: Smoothness propagates globally.

– For any ribbon of maximum coupling length r in the mesh, the
continuity of the ribbon head Ih is equal to the continuity on
any interface in the tail.

– ∀r ∈ U, ϑIh = ϑIi , Ih ∈ r, Ii ∈ t ∈ r.

• k: Local variation in smoothness is permitted.

• P : Polynomial degree propagates globally.

– For all interfaces in the mesh, the polynomial degree parallel to
the interface is the same on both cells adjacent to the interface.

– ∀I ∈ Cd−1(U), p‖e (c) = p
‖
e (c′), e ∈ ADJ1(I), {c, c′} ⊆ ADJd(I).

• p: Local variation in polynomial degree is permitted.

Table 1: The definition of each superscript used to identify a U-spline mesh class.

45

10 The U-spline basis
A U-spline basis is constructed over a U-spline mesh U as follows:

1. Determine the index support idn = ID(n),n ∈ BV(c) for each k-cell basis vector n associated with each
k-cell c ∈ U (see section 8).

2. Determine the index support idA of each U-spline basis vector by constructing a corresponding core
graph GA (see section 10.1).

3. Determine the basis vector uA of each U-spline basis function by solving the rank one null space problem
R|idA

(see section 10.2).

4. Normalize the set of U-spline basis vectors UV(U) to determine the set of U-spline basis functions UF(U)
(see section 10.3).

10.1 The core graph
In order to construct U-spline basis vectors or, equivalently, U-spline basis functions, we need to create
collections of vertex basis vectors and represent relationships between them. We do this by defining a core
graph for each U-spline basis function. A core graph GA is a directed acyclic graph that combines adjacent
vertex basis vectors into the index support idA for a single U-spline basis vector uA. An algorithm to compute
GA is given in algorithm 1.

10.1.1 Cores

Each node in the graph, called a core and denoted by κ, corresponds to a set of vertex basis vectors, i.e.,
κ ⊆ BV(v). To retrieve the core associated with a vertex v we use κ(v). The boundary of a core in the
direction of an edge e, denoted by BDe(κ), is computed in the same manner as basis vector boundaries
(section 8.7). The set of children cores of κ is denoted by children(κ). We say that cores κi and κj are
conforming if BDe(κi) = BDe(κj) on a shared edge e. Edges between conforming cores represent parent/child
relationships in GA.

10.1.2 Expansion edges

The core graph algorithm functions by iterating over candidate expansion edges on which to expand. An
expansion edge is a directed edge from vertex vi to vertex vj , denoted ei,j . For the subsequent definitions it is
convenient to define several auxiliary sets. The set of expanding basis vectors on a vertex adjacent to a core is
given by

XBV(κi, vj) = {n ∈ BV(vj) : C(ID(n)) 6⊆ C(ID(κi))}. (115)

The set of interacting edges is given by

IE = {ei,j : SBV(κi) ∩ SBV(XBV(κi, vj)) 6= ∅}. (116)

The set of covered edges is given by

CE = {ei,j : BDe(κi) ⊆ SBV(κj)}. (117)

Finally, let FE be the set of directed edges for which the algorithm has tried and failed to find a conforming
child core. Then, the set of candidate expansion edges are given by:

XE = IE \ (CE ∪ FE). (118)

The core graph algorithm proceeds in a breadth-first manner. That is, in a graph with multiple candidate
expansion edges, we prioritize those edges originating from cores closest to the root of the graph.

46

Algorithm 1 Compute core graph GA from given vertex basis vector n
1: procedure ComputeCoreGraph(n)
2: κr ← {n} . The root core consists of the input null vector.
3: κ(vr)← κr . Initialize the graph by inserting the root core.
4: while XE 6= ∅ do
5: ei,j ← next(XE) . Get next expansion edge from XE.
6: if κ(vi) is an ancestor of κ(vj) then . A connection from κi to κj would create a cycle.
7: FE← FE ∪ ei,j . Mark ei,j as failed and go to next iteration.
8: continue
9: end if
10: κnew ← {n ∈ BV(vj) : BDe(n) ⊆ BDe(κ(vi))} . Construct a new core on vj that conforms to κi.
11: if κnew = ∅ then . If κnew is empty, expansion failed along this edge.
12: FE← FE ∪ ei,j
13: continue
14: end if
15: κ(vj)← κ(vj) ∪ κnew . Merge κnew with any existing null vectors in κ(vj).
16: children(κ(vi))← children(κ(vi)) ∪ κ(vj) . Add a graph edge from κi to κj .
17: for each κc ∈ children(κ(vj)) do . Prune any children of κ(vj) that no longer conform.
18: if BDe(κc) 6= BDe(κj) then
19: remove κc and all descendants from GA
20: end if
21: end for
22: FE← FE \ (ei,j ∪ ej,i) . Remove ei,j and its opposite from failed edges.
23: end while
24: success← FE = ∅ . The algorithm succeeds only if it terminates with no failed edges.
25: return GA, success
26: end procedure

10.1.3 Algorithm

Algorithm 1 describes the procedure for constructing a core graph. To illustrate the behavior of the core
graph algorithm, first consider the one-dimensional cubic U-spline mesh shown in fig. 46, where each feature
of a core graph is depicted, including the root core κ0, two child cores κ1 and κ2, and the expansion candidate
edges XE which resulted in the two children being added to the graph. Next, consider the two-dimensional
cubic U-spline mesh shown in fig. 47. This mesh has twelve cells and continuity C2 everywhere except for
one edge which is C3, forming a supersmooth interface. The Bernstein coefficients of the completed basis
function are listed in appendix E.1. For additional insight into U-spline basis construction, see the exercises
in appendix A.5.

e ∈ XE

Boundary of κ0 is conforming

κ0

κ2κ1

Figure 46: An example of a simple core graph on a one-dimensional cubic U-spline mesh. The continuity on the
interfaces is C2.

47

κ0

(a) The root core κ0.

κ0

κ2

κ1

(b) The core graph is expanded along the edges
to the right and top, forming cores κ1 and κ2.

κ0

κ2

κ1

κ4

κ3

(c) The core graph is expanded a second time, to
the right on both legs of the graph, forming cores
κ3 and κ4. A failed expansion is encountered
when trying to expand upwards from κ1 .

κ0

κ2

κ1

κ4

κ3

(d) Expanding from the other direction, the failed
edge is resolved, but this results in adding an extra
basis vector to κ1, which causes κ3 to become
inconsistent with its parent core.

κ0

κ2

κ1

κ4

(e) The inconsistent child core is removed from
the graph.

κ0

κ2

κ1

κ4

κ3

κ5

(f) The core graph construction is completed.

Figure 47: A two-dimensional core graph example. In this example, the U-spline mesh U is a 3-by-4 bicubic mesh
with a single supersmooth interface. All interior edges have continuity C2 (thin solid lines) except for one, which
has continuity C3 (thick dashed line), forming a supersmooth interface.

10.2 The rank one null space problem
The U-spline index support idA is extracted from the combined index supports of the cores in GA. We
then consider a restricted rank one constraint matrix R|idA

and associated null space problem. In the
multi-dimensional setting, the smoothness constraints often form a system of linearly dependent equations.
That is, the constraint matrix R|idA

is often not square, with the number of rows m being greater than the
number of columns n. To solve for the Bernstein coefficients of the U-spline basis vector uA, one approach is

48

to solve for the reduced row echelon form of R|idA
via Gaussian elimination, resulting in a matrix with m− n

rows equal to 0T . However, it has been shown that Gaussian elimination on floating point numbers leads to
unacceptably high accumulated error when analyzing the null space of spline constraint equations [2].

An alternative approach is to cast the problem as the linear program

minimize 1TuA (119)
subject to R|idA

uA = 0 (120)
uA ≥ 1. (121)

Note that we have enforced the lower bound uA ≥ 1 to preclude the trivial solution of uA = 0. This linear
program can then be solved using any number of established methods such as simplex methods or interior-point
methods. We have used the revised simplex method implemented in the lp_solve package [7]. Thus far we
have found this approach to be sufficient for solving our problems of interest, and as such have not compared
the various algorithms that may be used to solve the above linear program. Instead, a detailed comparison of
the solution methods that may be employed to solve the linear system of constraint equations for a given
function will be the topic of a future work.

10.3 Normalization
To recover a partition of unity in the U-spline basis we perform a normalization step. In other words, we want
to find a set of positive coefficients cA ∈ R+, A = 1, . . . , |UF|, such that

1 =
∑
A

cANA (122)

=
∑
A

N̄A (123)

where N̄A is a normalized U-spline basis function. This normalization is always possible due to the underlying
structure of the null space N.

This problem can be solved in a variety of ways such as by constructing a full rank linear system by
sampling the U-spline basis at |UF| unique locations or by recasting the problem as a linear programming
problem and solving it using a simplex method or similar technique as described in section 10.2.

Note that there exists a set of non-negative coefficients, cA ∈ R+, A = 1, . . . , |UF|, such that

1 =
∑
A

cANA. (124)

This can be shown using the following reasoning. Since the function f = 1 is an analytic function and f ∈ Bc

for every c ∈ U we know that f ∈ N. This means there exists a set of coefficients, cA ∈ R, A = 1, . . . , |UF|,
such that ∑

A

cAuA = 1. (125)

Since by construction N ⊂ R|UF|
+ , where R|UF|

+ is the non-negative orthant, and R|UF| is a polyhedral cone then
N is a polyhedral cone as well. This means that, in fact, the coefficients are also non-negative, i.e., cA ∈ R+.
Consequently, we have that ∑

A

cAuA = 1 (126)∑
A

cA
∑

i∈idA

uAi Bi =
∑

i∈ID(U)

Bi (127)

∑
A

cANA = 1 (128)∑
A

N̄A = 1. (129)

49

11 The U-spline space
Given a U-spline mesh U, a U-spline space, denoted by U(U) or U for short, can now be defined. As described
in section 6, we will construct the U-spline space by leveraging the nullspace perspective for splines. However,
rather than constructing and attempting to find a solution to the global nullspace problem, which can be
computationally expensive and numerically unstable [12, 13], we will instead solve a single small, highly
localized rank one nullspace problem for each U-spline basis function.

11.1 Completeness and the neighborhood of interaction
Because adjacent cells with differing polynomial degree can occur in admissible meshes, the notion of
completeness of the U-spline basis must take into account the way a cell of lower degree affects the completeness
on adjacent cells which may have a local Bernstein basis of higher degree, but only have completeness at a
lower total degree, bounded by the lower degree of nearby cells.

For example, in fig. 48, we show a U-spline mesh with three quadratic and one linear cell, and C0 continuity
on the interfaces. The indices of the nonzero coefficients of the U-spline basis functions on this mesh are
highlighted in gray. Observe that the cells directly to the left and directly below the linear cell each have a
local Bernstein basis of degree p = (2, 2), which has a total of nine functions, yet there are only eight U-spline
basis functions which are nonzero on those cells. Due to their close proximity to the linear cell, these cells are
complete up to degree p = (2, 1) and p = (1, 2), respectively, or complete up to total degree p = 1. The cell
diagonal from the linear cell, on the other hand, is not impacted by the linear basis and remains complete up
to degree p = (2, 2).

Figure 48: A U-spline mesh with three quadratic and one linear cell, and C0 continuity on the interfaces. The
indices of the nonzero coefficients of the U-spline basis functions are highlighted in gray. The quadratic cells on
the top-left and bottom-right have a reduced degree of completeness due to their proximity to the linear cell.

To describe this behavior, we define a submesh NI(c), called the neighborhood of interaction, of a given
d-cell c. Let the set of basis functions that are nonzero over a k-cell c be denoted by UF(c) and the extended
support of a k-cell be denoted by

supp(UF(c)) =
⋃

NA∈UF(c)

supp(NA) . (130)

Additionally, we denote the set of all d-cells that can be reached in a cardinal submesh direction that is
orthogonal to the interfaces that are adjacent to a d-cell c by CRD(c). Figure 49 shows CRD(f) for a face f.
Then, the neighborhood of interaction NI(c) of a given d-cell c is defined as

NI(c) = supp(UF(c)) ∩ CRD(c). (131)

The neighborhood of interaction of the linear cell in the mesh in fig. 48 is highlighted in fig. 50. The
completeness of a U-spline space is then defined as described in section 11.2.

11.2 Mathematical properties
The mathematical properties satisfied by a U-spline space are:

• Local linear independence: The set of U-spline basis functions are locally linearly independent. This
means that, for any submesh K ⊆ U,

∑
A cANA(s) = 0 for all s ∈ Ω̂K, where c[U] = {cA} is a set of

real coefficients, if and only if c[U] = 0.

50

f

Figure 49: The faces that can be reached in a cardinal submesh direction that is orthogonal to the interfaces
adjacent to f, denoted by the set CRD(f).

c

Figure 50: The neighborhood of interaction NI(c) is highlighted for a cell c on a two-dimensional U-spline mesh
with three quadratic and one linear cell and continuity C0 on the interfaces.

• Completeness: A set of U-spline basis functions is complete through total polynomial degree

|qc| = min
a∈NI(c)

|pa| (132)

over Ω̂c. Additionally, a U-spline space is complete through total polynomial degree∣∣qU∣∣ = min
c∈U
|qc| (133)

over Ω̂U. In other words, there exists a set of real coefficients {cA} such that
∑
A cANA(s) = sr for any

r ≤ |qc| , s ∈ Ω̂c or r ≤
∣∣qU
∣∣ , s ∈ Ω̂U.

• Pointwise non-negativity: A set of U-spline basis functions are pointwise non-negative. More precisely,
NA(s) ≥ 0 for all s ∈ Ω̂U, A = 1, . . . , |UF(U)| where UF(U) is the set of U-spline basis functions that
are nonzero over Ω̂U.

• Partition of unity: A set of U-spline basis functions forms a partition of unity. In other words,∑
ANA(s) = 1 for all s ∈ Ω̂U.

• Compact support: Compact support simply means that for any U-spline basis function NA there
exists a submesh KA ⊆ U such that for any s ∈ Ω̂U{

NA(s) > 0 s ∈ Ω̂KA ,

NA(s) = 0 otherwise.
(134)

It is desirable for the submesh KA to be as small as possible to preserve the sparsity of linear systems
written in terms of the basis functions.

11.3 Numerical verification
The approach to building a basis on a U-spline mesh presented in section 10 is algorithmic in nature. In
order to verify that this algorithm will always successfully build a valid U-spline basis with the desired
properties on every U-spline mesh, we performed extensive testing by running the U-spline algorithm on a

51

large number and variety of one- and two-dimensional input U-spline meshes. For three-dimensional meshes,
due to computational speed limitations we focused our testing on a specific set of tailor-made volumetric
meshes that specifically conform to or violate each admissibility condition. A formal proof of the correctness
of the algorithm is beyond the scope of this work.

The set of all admissible U-spline meshes is very large, and it is impractical to test every possible mesh
configuration. In order to ensure that our test suite contained sufficient variety to provide reasonable evidence
of the validity of the U-spline algorithm, for one- and two-dimensional meshes we leveraged the U-spline
mesh classification system presented in section 9.3 to generate test meshes within several of these classes,
representing increasing levels of complexity.

11.3.1 Overview of verification procedure

We first generated meshes within the most structured class URHKP , and then proceeded to remove structure
until finally a large number of meshes in the class Urhkp were tested (see table 1 for a definition of each
superscript). In one dimension, we focused on class URhKP . For each mesh, we used the U-spline algorithm
to construct a set of basis functions. These basis functions were then analyzed to ensure they satisfied all the
mathematical properties of a U-spline space as described in section 11.2.

One dimension For one-dimensional meshes, the class URhKP was selected, which allows any degree on
each cell and continuity on each interface up to C∞. This is the most unstructured class possible in one
dimension.

Two dimensions On two-dimensional meshes, five gradations of structure were selected.

• URHKP : Tensor-product topology; degree and continuity propagate globally.

• URhkP : Tensor-product topology; degree propagates globally but continuity may vary locally (including
supersmooth interfaces).

• URHKp: Tensor-product topology; continuity propagates globally but degree may vary locally.

• UrHkP : Meshes may include extraordinary vertices and triangles; degree propagates globally but
continuity may vary locally.

• Urhkp: Fully unstructured.

Within each class, meshes were randomly constructed to include as much variation as possible while still
conforming to the admissibility conditions described in section 9.2. This included degree up to p = 3 and
continuity up to ϑ = C2 or when permitted, supersmooth continuity. The process of constructing these meshes
involved starting with a specific base topology, listed below, and then applying further modifications as the
class allowed, such as adding extraordinary vertices, triangles, and variations in degree and continuity. The
base topologies used are as follows. Simple representations of these base topologies are shown in fig. 51.

• Line. A line topology is a non-periodic one-dimensional sequence of edges, and is denoted by L.

• Loop (has periodicity). A loop topology is a periodic one-dimensional sequence of edges, and is denoted
by P.

• Regular grid. A regular grid topology is a tensor product of two non-periodic one-dimensional mesh
topologies, and is denoted

G = L⊗ L . (135)

• Annulus (periodicity in one tensor product direction). An annulus topology is the tensor product of a
periodic one-dimensional topology with a non-periodic one-dimensional topology, and is denoted

A = P⊗ L . (136)

52

• Torus (periodicity in both tensor product directions). A torus topology is the tensor product of two
periodic one-dimensional topologies, and is denoted

T = P⊗ P . (137)

• Triangle. A triangle mesh topology is an unstructured mesh containing only triangles, and is denoted
∆.

• Mixed grid. A mixed grid mesh is a mesh containing both quadrilateral and trianglar cells that is
constructed by taking a tensor product mesh (grid, annulus, or torus), and then splitting a subset of the
quadrilateral cells into two or more triangles. A mixed grid mesh is denoted M.

• Multi-patch. A multi-patch topology is constructed of multiple regular grid, mixed grid, or triangle
meshes, sewn together along conforming boundaries. A multi-patch topology is denoted X.

Following these guidelines, twenty-five thousand two-dimensional admissible U-spline meshes were con-
structed, with variation in degree, continuity, mesh size, and topology. In addition, several thousand
one-dimensional admissible U-spline meshes of all combinations of degree and continuity were also constructed.
The U-spline algorithm successfully constructed a basis on each of these meshes that was verified to satisfy all
the mathematical properties of a U-spline space described in section 11.2.

(a) A regular grid, no periodicity. (b) An annulus, periodic in one
dimension.

(c) A torus, periodic in two di-
mensions.

Figure 51: The three base tensor-product topologies used for constructing two-dimensional U-spline test meshes
for verification.

Three dimensions Due to computational speed limitations, it was impractical to generate and test
volumetric meshes in the same way as was done in one and two dimensions. Instead, a specific set of
tailor-made volumetric meshes were created that specifically conform to or violate each admissibility condition.
Our tests demonstrated that the U-spline algorithm successfully built a valid U-spline basis with the desired
properties on each of the admissible meshes.

12 Notable U-spline examples
12.1 Supersmooth interfaces
Figure 52 shows a U-spline mesh where two perpendicular continuity transition ribbons, emanating from
supersmooth interfaces, touch at a common endpoint. The support of a nearby U-spline basis function is
also shown. The control points for a linear parameterization of this mesh along with a countour plot of
the highlighted basis function are seen in fig. 53. Notice the non-rectangular support of the basis function,
required in this configuration to ensure local linear independence of the U-spline basis near the transition.

This example contrasts with T-splines, that leverage a type of supersmooth interface, called a T-junction,
which only produce blending functions that have a tensor product structure [55, 35]. U-splines, on the other

53

hand, are not limited to a tensor product structure, and can therefore produce an analysis-suitable basis
on certain meshes which cannot produce analysis-suitable T-splines. This is particularly evident in cases
where infinitely smooth interfaces are close enough in proximity to interact, as we see in this example. The
values of the Bernstein coefficients of the highlighted basis function are listed in the appendix E.2. See also
appendix E.3 to compare with a U-spline that is equivalent to an analysis-suitable T-spline.

Continuity C2

Continuity C3

Ray of maximum coupling length

Figure 52: An example of a U-spline basis function that has a non-rectangular shape due to the close proximity of
two continuity transitions near supersmooth interfaces. Notice the two perpendicular transition ribbons, starting
at the vertices adjacent to the supersmooth interfaces, which touch at a common endpoint. This is an example
of a basis function which is not possible with T-splines, which require basis functions to have a tensor product
structure.

(a) The control points for a linear parameter-
ization of the mesh in fig. 52. The control
point associated with the basis function in
fig. 52 is highlighted.

(b) A contour plot of the basis function whose
nonzero Bernstein coefficients are shown in
fig. 52.

Figure 53: A U-spline with local variation in smoothness.

12.2 Degree transitions
Figure 54 illustrates a transition from a degree 2, continuity C1 section of the mesh to a degree 3, continuity
C2 section. The continuity in the vicinity of the degree transition must be carefully set to maintain the
admissibility of the U-spline mesh.

54

Continuity C1

Continuity C2

(a) A degree transition from p = 2, C1 (on the top-right) to
p = 3, C2 (on the bottom-left). The creasing pattern here is
required to ensure the U-spline mesh is admissible.

(b) The control points that form a linear parameterization for
the U-spline mesh on the left.

Figure 54: A U-spline with local variation in degree.

12.3 Extraordinary vertices
A cubic U-spline mesh that contains an extraordinary vertex is shown in fig. 55a. Graded creasing on the edges
emanating from the extraordinary vertex transition the continuity gradually from C0 to C2. The highlighted
basis function overlaps these edges, transitioning from C0 to C2 smoothness within its support. The control
points for a linear parameterization of the mesh are seen in fig. 55b, and a contour plot of the highlighted
basis function is seen in fig. 55c. The coefficients for this basis function are listed in appendix E.4.

Continuity C1
Continuity C0

Continuity C2

(a) (b) (c)

Figure 55: An example of a cubic U-spline basis function near an extraordinary vertex that transitions from C0 to
C1, and then from C1 to C2. The coefficients for this example are listed in appendix E.4.

55

12.4 Triangles
In fig. 56 two tensor product regions meet diagonally. Triangles are used in the transition region. In fig. 57
triangles are utilized in one portion of the domain, which then interface with quadrilateral cells to transition
to a C2 outer boundary.

Continuity C1
Continuity C0

(a) A quadratic U-spline mesh where triangles allow
two tensor product regions to meet diagonally. The
edges near the triangles are creased to C0, but edges
further out retain C1 continuity.

(b) The control points and geometry of a U-spline
where two regular grids meet diagonally with the
help of triangles at the interface.

Figure 56: A U-spline composed of quadrilateral and triangular cells.

Continuity C0

Continuity C1

Continuity C2

(a) This U-spline mesh is cubic with C2 continuity
on the outside edge, but is filled in the interior with
linear triangles. A continuity transition was required
between the C0 triangles and the C2 quadrilaterals.

(b) The control points and geometry of the U-spline
mesh in fig. 57a. Meshes of this type may prove use-
ful to engineers who are only interested in smooth-
ness on the surface, and opt for faster linear trian-
gular cells on the interior.

Figure 57: A U-spline with local variation in smoothness, degree, and cell type.

56

12.5 Unstructured volumetric U-splines
Figure 58a shows an example of a quadratic fully-unstructured volumetric U-spline mesh that forms a 3×3×3
lattice structure with repeating unit cells sharing circular interfaces. This mesh has 3888 quadratic hexahedral
elements. Most of the faces have C0 continuity (colorless faces) because they are adjacent to an extraordinary
edge, while a few of the faces have C1 continuity (colored). The control points for this U-spline were chosen
by projecting a linear mesh onto the U-spline basis. A rendered representation of the geometry defined by
these control points is shown in fig. 58b.

(a) A quadratic fully-unstructured volumetric U-spline mesh
which forms a 3× 3× 3 lattice structure with unit cells shaped
like spheres with holes.

(b) A rendered representation of a volumetric U-spline whose
basis is defined by the U-spline mesh shown in fig. 58a.

Figure 58: An example of a fully-unstructured volumetric U-spline mesh. The U-spline mesh is on the left and
the U-spline geometry is on the right.

Figure 59 shows an example of a quadratic fully-unstructured volumetric U-spline mesh of a segment of a
piston. This mesh has 1539 quadratic hexahedral elements. All colorless faces have C1 continuity while the
colored faces are C0. This example contains several extraordinary edges both interior and on boundaries. The
continuity scheme set on the interfaces of this mesh uses the minimal creasing necessary to be admissible.
Earlier spline methods (such as multi-patch NURBS) would have required many more faces to be creased. The
control points for this U-spline were chosen by performing a projection of the linear mesh onto the U-spline
basis. A rendered representation of the U-spline geometry is shown in fig. 60.

57

Figure 59: Several views of a fully-unstructured volumetric U-spline mesh of a segment of a piston.

58

Figure 60: Several rendered views of the piston segment volumetric U-spline whose basis is defined by the mesh
shown in fig. 59.

13 Conclusion
The ability to construct analysis-suitable smooth splines over unstructured meshes is a significant step forward
for improving the capabilities of CAD/CAE systems. The U-splines technology introduced in this work is
capable of smoothly and accurately representing complex CAD models, is compatible with prevailing industrial
spline representations, such as NURBS and analysis-suitable T-splines, and supports the local variation of
cell size (i.e., h-refinement), degree (i.e., p-refinement), and intercell continuity (i.e., ϑ-refinement) including
support for extraordinary and mixed cell types. U-splines offers a locally-supported, complete, positive basis
that forms a partition of unity and is locally linearly independent, making it ideal for use in simulation
procedures such as FEA. Furthermore, the algorithm for constructing a U-spline basis is not hampered by
dimensional limitations, which we have exploited to develop volumetric U-spline bases. It is our opinion that
a smooth spline meshing technology for industrial-scale FEA problems should have all of these characteristics,
and that U-splines is capable of fulfilling this purpose.

14 Acknowledgements
This work was supported in part by the U.S. Department of Energy, Office of Science, Office of Advanced
Scientific Computing Research, under award numbers

• SBIR Phase II DE-SC0017051

• SBIR DE-SC0020906

59

• SBIR DE-SC0019945

Support was also provided by the Department of Defense, Navy, under contract numbers

• SBIR N68335-15-C-0245

• STTR N68335-16-C-0209

Support was also provided by the U.S. Army, STTR W911NF20P0002.
Funding was also provided by Honeywell Federal Manufacturing & Technologies, managing and operating
partner of the Kansas City National Security Campus pursuant to Prime Contract DE-NA0002839 with the
U.S. Department of Energy, under contract numbers

• N000254262

• N0000294261

• N000335868

• N000344045

• N000375957

Additional support was provided by a grant from the Utah Science Technology and Research Initiative
Technology Acceleration Program, grant numbers 171117 and 181472.

This work was supported by an agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The views and opinions of authors expressed
herein do not necessarily state or reflect those of the United States Government or any agency thereof.

The authors would like to acknowledge Matt Sederberg for his support in editing and improving this work.

A A gentle introduction to U-splines
We recognize that for those new to this material, many of the concepts and definitions described in this
work may be challenging to parse. Accordingly, in this section we introduce some of the more technical ideas
through simple examples and practice problems, and their accompanying solutions. We recommend the reader
work through these exercises to gain greater insight into the principles behind U-splines.

A.1 Building intuition: Constraints
The following exercises introduce basic concepts behind continuity constraints, described in detail in section 5
and appendix B.

Exercise 1

Consider two d-cells a and b on a one-dimensional mesh, separated by interface I as shown in fig. 61.
Each cell is assigned a parameterization with parent coordinate ξ ∈ [0, 1] running from left to right.
The length of the parametric domain on cell a is `a, and the length of the parametric domain on cell b
is `b. The mapping from the parent to the parametric domain on each cell is

sa = `aξa,

sb = `bξb.
(138)

60

The degree assigned to cell a is pa, and the degree assigned to cell b is pb. Derive the continuity
constraint on the nth derivative across interface I in homogeneous Bernstein form.

a b

I

f(ξ)

Figure 61: Two cells a and b separated by interface I on a one-dimensional mesh. An example function
f(ξ) spans the domains of both cells.

Answer to Exercise 1

The piecewise function f(ξ) (see fig. 61) may be written in Bernstein form as

f(ξ) =


∑

ia∈ID(a)
Bp

a

ia (ξa)cia for ξa ∈ Ωa
,∑

ib∈ID(b)
Bp

b

ib (ξb)cib for ξb ∈ Ωb
.

(139)

The continuity constraint on the nth derivative across the interface is given by:(
1
`a

)n
dnf(ξa)
dξan

∣∣∣∣
ξa=1

=
(

1
`b

)n
dnf(ξb)
dξbn

∣∣∣∣
ξb=0

(140)

which can be written in homogeneous Bernstein form, with respect to the parent coordinate system of
each d-cell, as(

1
`a

)n ∑
ia∈ID(a)

dnBp
a

ia (1)
dξan cia −

(
1
`b

)n ∑
ib∈ID(b)

dnBp
b

ib (0)
dξbn cib = 0 ∀ n ∈ [0, ϑI]. (141)

Exercise 2

A four-element Bézier mesh with a bilinear C0 basis is shown in fig. 62. Use the provided function
indexing to determine the constraint matrices for all four internal interfaces and the global constraint
matrix. The interface I0 is the bottom interface and the remaining interfaces are ordered in a
counterclockwise fashion. What is the rank of the global constraint matrix?

0 1

2 3

4 5

6 7

8 9

10 11

12 13

14 15

Figure 62: A four-element Bézier mesh with a bilinear C0 basis. The Bernstein functions are labeled with
the indexing used in the exercise.

61

Answer to Exercise 2

The interface constraint matrices are:

R(I0) =
[
0 1 0 0 −1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 −1 0 0 0 0 0 0 0 0 0

]
, (142)

R(I1) =
[
0 0 0 0 0 0 1 0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 −1 0 0

]
, (143)

R(I2) =
[
0 0 0 0 0 0 0 0 0 1 0 0 −1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 −1 0

]
, (144)

R(I3) =
[
0 0 1 0 0 0 0 0 −1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 −1 0 0 0 0 0 0

]
, (145)

and the global constraint matrix is

R(B) =



0 1 0 0 −1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 0 1 0 0 −1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 −1 0
0 0 1 0 0 0 0 0 −1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 −1 0 0 0 0 0 0


(146)

which has rank seven. The rank of the associated nullspace is nine. In general, to find a minimal basis
for the nullspace of a high-rank constraint system, we will identify subsystems that have rank one
nullspaces (see exercises 7, 9 and 15). Observe that while the matrix has rank seven, it has eight rows
which means that the constraints contain a linear dependence—a situation we often find on
higher-dimensional meshes. Linear optimization approaches may be used to overcome this
complication (see section 10.2).

Exercise 3

Determine the constraint matrix R(I) for the Bézier mesh shown in fig. 63.

Ia b

0 1 2

3 4 5

6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

21 22 23 24

Figure 63: A Bézier mesh with two cells with degrees p = (2, 2) on the left and p = (3, 3) on the right,
separated by a C1 interface I. The Bernstein functions are labeled with the indexing used in the exercise.

Answer to Exercise 3

The indices corresponding to the nonzero Bernstein coefficients in each constraint are shown in fig. 64
and the associated Bernstein coefficient values are shown in eq. (147).

62

Figure 64: Sets of indices, highlighted in grey, corresponding to the Bernstein coefficients involved in the
constraint equations for a C1 interface between two cells with degrees p = (2, 2) on the left and p = (3, 3)
on the right. The top four index sets correspond to the four C0 constraint equations and the bottom four
index sets correspond to the four C1 constraint equations. The values are given in eq. (147).

R(I) =



0 0 0 0 0 0 0 0 −1 0 0 0 0
0 0 0 0 0 − 2

3 0 0 − 1
3 0 0 0 0

0 0 − 1
3 0 0 − 2

3 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 2 −2 0 0 0 0
0 0 0 0 4

3 − 4
3 0 2

3 − 2
3 0 0 0 0

0 2
3 − 2

3 0 4
3 − 4

3 0 0 0 0 0 0 0
0 2 −2 0 0 0 0 0 0 −3 3 0 0

0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −3 3 0 0
0 0 0 0 −3 3 0 0 0 0 0 0
−3 3 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0



(147)

A.2 Building intuition: Splines
The following exercises introduce basic concepts behind splines, spline bases, and the associated nullspace
problem. These concepts were described in detail in section 6.

Exercise 4

Consider the two element Bézier mesh consisting of linear cells and a C0 constraint assigned to the
interface I between them as shown in fig. 65. Solve for the basis vectors of the nullspace.

`a = 1 `b = 1C−1 C0 C−1

Figure 65: A two element linear Bézier mesh with a single C0 interface. The exercise is to solve for the
basis vectors of the nullspace of this Bézier mesh.

63

Answer to Exercise 4

We start by defining the corresponding global constraint matrix

R(B) =
[
0 1 −1 0

]
. (148)

A basis for the nullspace of this matrix is

UV(B) =




1
0
0
0

 ,


0
1
1
0

 ,


0
0
0
1


 . (149)

Each coefficient in each vector corresponds to one of the Bernstein basis functions in the two element
mesh.

Figure 66: The nonzero coefficients of the basis vectors that span the nullspace of the Bézier mesh shown
in fig. 65. The red dots represent the control points of the Bézier curve on each element.

Exercise 5
Consider the two element Bézier mesh shown in fig. 67. Compute the constraint matrix R(B) and
verify that one possible basis for the nullspace of R(B) is given by the basis vectors

UV(B) =





1
0
0
0
0
0
0
0


,



0
1
1
21
41
4
0
0
0


,



0
0
1
21
21
21
2
0
0


,



0
0
0
1
41
41
2
1
0


,



0
0
0
0
0
0
0
1




. (150)

`a = 1 `b = 1C−1 C2 C−1

Figure 67: A two element cubic Bézier mesh with a single C2 interface. The exercise is to compute the
constraint matrix of the nullspace of this Bézier mesh, and verify the basis given in eq. (150).

Answer to Exercise 5
The constraint matrix across the interface I can be shown to be

R(B) =

0 0 0 1 −1 0 0 0
0 0 −3 3 3 −3 0 0
0 6 −12 6 −6 12 −6 0

 . (151)

64

The basis vectors which represent the sparsest possible positive basis for the nullspace of R(B) are
shown in fig. 68. This Bézier mesh generates a spline space which is equivalent to a B-spline with knot
vector Ξ = [0 0 0 0 1 2 2 2 2] [8, 54].

Figure 68: The nonzero coefficients of the basis vectors that span the nullspace of the Bézier mesh shown
in fig. 67. The red dots represent the control points of the Bézier curve on each element.

Exercise 6

Compute the global extraction operator C for the knot vector Ξ = [0 0 0 0 1 2 2 2 2] [8, 54].

Answer to Exercise 6

C =


1 0 0 0 0 0 0 0
0 1 1

2
1
4

1
4 0 0 0

0 0 1
2

1
2

1
2

1
2 0 0

0 0 0 1
4

1
4

1
2 1 0

0 0 0 0 0 0 0 1

 . (152)

Observe that the basis vectors computed in eq. (150) have the same coefficient values as the rows of
the global extraction matrix shown in eq. (152). This demonstrates the connection between the spline
basis and basis vectors for the nullspace.

A.3 Building intuition: Basis vectors
The following exercises introduce basic concepts behind basis vectors for k-cell nullspaces and the related
rank one nullspace problem. These concepts were described in detail in section 8.

Exercise 7

Observe that the three interior basis vectors with multiple nonzero coefficients, shown in eq. (150), all
have four nonzero entries and that these same coefficients can be obtained by solving the three reduced

65

problems

R(I)1c[B]1 = 0, (153)
R(I)2c[B]2 = 0, (154)
R(I)3c[B]3 = 0, (155)

where the reduced smoothness constraint matrices are

R(I)1 =

0 0 1 −1
0 −3 3 3
6 −12 6 −6

 , (156)

R(I)2 =

 0 1 −1 0
−3 3 3 −3
−12 6 −6 12

 , (157)

R(I)3 =

1 −1 0 0
3 3 −3 0
6 −6 12 −6

 . (158)

Each of these matrices has rank three which means that it has a rank one nullspace. These problems
do not have unique solutions. One way to obtain a positive solution to these problems is to augment
the constraint matrix so that one of the values is constrained to be one. Carry this procedure out for
each of the reduced matrices and solve for the resulting vectors.

Answer to Exercise 7

The augmented matrix system for R(I)1 is
1 0 0 0
0 0 1 −1
0 −3 3 3
6 −12 6 −6

 c[B]1 =


1
0
0
0

 . (159)

The augmented matrix system for R(I)2 is
1 0 0 0
0 1 −1 0
−3 3 3 −3
−12 6 −6 12

 c[B]2 =


1
0
0
0

 . (160)

The augmented matrix system for R(I)1 is
1 0 0 0
1 −1 0 0
3 3 −3 0
6 −6 12 −6

 c[B]1 =


1
0
0
0

 . (161)

The solutions to these three augmented problems are

c[B]1 =


1
1
21
41
4

 , c[B]2 =


1
1
1
1

 , c[B]3 =


1
1
2
4

 . (162)

This solution, however, does not coincide with the nonzero values for the three central vectors in
eq. (150). Because any scaling of the basis vectors is also a solution, we can define a new basis

66

˜c[B]1 = c[B]1, ˜c[B]2 = 1
2c[B]2, and ˜c[B]3 = 1

4c[B]3:

˜c[B]1 =


1
1
21
41
4

 , ˜c[B]2 =


1
21
21
21
2

 , ˜c[B]3 =


1
41
41
2
1

 . (163)

The values of this new basis now coincide with the nonzero values of the middle three basis vectors
given in eq. (150).

Exercise 8

Why is the augmentation procedure, where one additional equation is added that has exactly one
nonzero entry, sufficient to solve a rank one nullspace problem?

Answer to Exercise 8

Each of the reduced constraint matrices has rank three but there are four undetermined coefficients.
This means that each of the problems is a rank one nullspace problem; in other words, the nullspace
is one-dimensional. Any rank one nullspace problem can be converted into a full rank linear system
by augmenting the system with one additional equation (as long as the added equation is linearly
independent from the original equations). The additional equation raises the system rank to four and
so we can obtain a unique solution. Any solution obtained will also be a solution to the original system;
additionally, any nonzero scaling of a solution to the augmented system will also be a solution of the
original reduced system.

Exercise 9

Describe the geometry of a rank one nullspace problem where the dimension of the constraint space C
is m and the dimension of the Bernstein space B is n. Graphically convey these ideas for the rank one
nullspace of the basis vector on the interface of the linear mesh given in exercise 4 in appendix A.2.

Answer to Exercise 9

The rank of the nullspace of the full constraint matrix is n−m, but the rank of the nullspace of each
reduced constraint matrix is always one. This rank one nullspace is orthogonal to the constraint space
and contained in B. Since this nullspace is a linear subspace of B of dimension one it is a line that
passes through the origin of B. The orientation of the line is such that it is orthogonal to the constraint
space. The requirement that the basis vector, which spans the nullspace, must be sparse means that
the chosen basis vector, which is not unique, is as close to orthogonal to B as possible. The requirement
that all entries be positive means that the chosen basis vector is in the non-negative orthant of Rn.
The Bernstein space of the one-dimensional Bézier mesh in fig. 65 has dimension n = 4 and the
constraint space has dimension m = 1, resulting in a nullspace of dimension 3. The basis vector on the
C0 interface has the reduced constraint matrix

R(B) =
[
1 −1

]
, (164)

which spans a line, seen as the red line in in fig. 69. This line is the constraint space. The nullspace
problem associated with this matrix can be written as x− y = 0, the solution of which is any vector[
x y

]T ∈ R2 which passes through the origin and is orthogonal to the red line (the constraint space).
Thus, a positive normalized basis vector spanning this nullspace is

[
1 1

]T , seen as a blue vector in
fig. 69, and any scaling of which is a solution to this nullspace problem.

67

y

x

Figure 69: The constraint space on the C0 interface of fig. 65 in exercise 4 is represented by the red line.
Any vector that is orthogonal to this line is a member of the nullspace.

Exercise 10

Write down the C0 constraint matrix for the system of cells shown in fig. 70 and draw the nonzero
entries for each constraint.

0 1

2 3

4 5

6 7

Figure 70: A two-element Bézier mesh with a bilinear basis and a C0 interface. The Bernstein functions
are labeled with the indexing used in the exercise.

Answer to Exercise 10

The coefficients corresponding to Greville points that are adjacent across the interface must be equal.
This knowledge leads to the constraint matrix:[

0 1 0 0 −1 0 0 0
0 0 0 1 0 0 −1 0

]
. (165)

The indices associated with nonzero coefficients in the constraint system are shown outlined in gray
boxes with dashed outlines. The two boxes represent the two rows in the matrix.

Figure 71: Coefficients corresponding to the nonzero entries in the two rows of the constraint matrix. Each
grey block surrounds the nonzero entries of one row.

68

The sparsest basis vectors for the constraint matrix are obtained by setting a single value to one and
solving all coupled constraints. 



1
0
0
0
0
0
0
0


,



0
0
1
0
0
0
0
0


,



0
1
0
0
1
0
0
0


,



0
0
0
1
0
0
1
0


,



0
0
0
0
0
1
0
0


,



0
0
0
0
0
0
0
1




. (166)

All constraints rows have only two nonzero entries and so there are two vectors with two values
(two-value constraint rows are equality constraints). A representation of the basis vectors is shown in
fig. 72. The markers corresponding to indices of the nonzero entries are surrounded with gray boxes;
each gray box corresponds to one basis vector.

Figure 72: Each gray box marks the nonzero entries in one basis vector.

Exercise 11
Determine the constraint matrix and the index sets for the basis vectors for the quadratic-linear two
cell example with a C1 interface shown in fig. 73.

0 1 2

3 4 5

6 7 8

9 10 11

Figure 73: A two-element Bézier mesh with a quadratic-linear basis and a C1 interface. The Bernstein
functions are labeled with the indexing used in the exercise.

Answer to Exercise 11
The constraint matrix on the C1 interface is

0 0 1 0 0 0 −1 0 0 0 0 0
0 2 −2 0 0 0 −2 2 0 0 0 0
0 0 0 0 0 1 0 0 0 −1 0 0
0 0 0 0 2 −2 0 0 0 −2 2 0

 . (167)

Figure 74: Coefficients corresponding to the nonzero entries in the four rows of the constraint matrix.
Each grey block surrounds the nonzero entries of one row: the C1 constraints on the left, and the C0

constraints on the right.

69

The basis vectors associated with this constraint matrix are



1
0
0
0
0
0
0
0
0
0
0
0





0
0
0
1
0
0
0
0
0
0
0
0





0
0
0
0
0
1
2
0
0
0
1
2
1
0





0
0
1
2
0
0
0
1
2
1
0
0
0
0





0
0
0
0
1
1
2
0
0
0
1
2
0
0





0
1
1
2
0
0
0
1
2
0
0
0
0
0





0
0
0
0
0
0
0
0
1
0
0
0





0
0
0
0
0
0
0
0
0
0
0
1





. (168)

The markers corresponding to indices of the nonzero entries are surrounded with gray boxes in fig. 75.
Each gray box corresponds to one basis vector.

Figure 75: Each gray box marks the nonzero entries in one basis vector.

Exercise 12

Determine the basis vectors with more than one nonzero entry for each interface constraint matrix
in eqs. (142) to (145) corresponding to the interfaces in fig. 62, and draw a picture highlighting the
nonzero entries for each vector.
Answer to Exercise 12

The required basis vectors for R(I0) are

v(a)I0 =
[
0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0

]T
, (169)

v(b)I0 =
[
0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0

]T
. (170)

The required basis vectors for R(I1) are

v(a)I1 =
[
0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0

]T
, (171)

v(b)I1 =
[
0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0

]T
. (172)

The required basis vectors for R(I2) are

v(a)I2 =
[
0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0

]T
, (173)

v(b)I2 =
[
0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0

]T
. (174)

The required basis vectors for R(I3) are

v(a)I3 =
[
0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0

]T
, (175)

70

v(b)I3 =
[
0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0

]T
. (176)

v(a)I0

v(b)I0

v(a)I2

v(b)I2

v(a)I3 v(b)I3 v(a)I1 v(b)I1

Figure 76: The nonzero coefficients of the individual edge basis vectors are surrounded by gray boxes.

A.4 Building intuition: The U-spline mesh
A U-spline mesh is a Bézier mesh which conforms to a set of admissibility conditions, as described in section 9.
These admissibility conditions rely on a concept called a ribbon. The following exercise introduces the basic
ideas behind the construction of a ribbon.

Exercise 13

Construct a ribbon of maximum coupling length on the mesh in fig. 77, originating at the red
Bernstein index near the vertex labeled with a small hollow square and proceeding to the right.
Determine whether the ribbon is truncated.

Continuity C0
Continuity C1

Figure 77: An example two-dimensional Bézier mesh with mixed degree and mixed continuity. The exercise
is to construct a ribbon of maximum coupling length, beginning at the vertex adjacent to the red Bernstein
index and extending to the right.

Answer to Exercise 13

First, we label the origin vertex o, head interface Ih, and all potential ribbon tail interfaces Ii, extending
to the right of o as seen in fig. 78. Then, a one-dimensional Bézier mesh is constructed that corresponds
to the minimum parallel degree adjacent to each potential ribbon interface (including the head), and
the maximum perpendicular continuity on each (d− 2)-cell in the ribbon skeleton, seen in fig. 80. The
ribbon is then constructed as described in algorithm 2. This procedure is analogous to chaining a
sequence of one-dimensional vertex basis vectors end-to-end, starting at the initial Bernstein index, and
overlapping only on their boundary as seen in fig. 80. The interfaces in the ribbon tail correspond to the
elements in the one-dimensional Bézier mesh which have at least one Bernstein index in a basis vector,
excluding the head (see fig. 79). In fig. 81 we observe that this ribbon is truncated. The condition
for truncation described in algorithm 2 is true for a ribbon which would have been longer had the
maximum perpendicular continuity on the final (d− 2)-cell in the ribbon skeleton been greater than or
equal to Cp−1.

71

Ih I0 I1 I2
o

Figure 78: The ribbon origin o, ribbon head
Ih, and potential ribbon tail interfaces Ii are
labeled.

Continuity C0
Continuity C1
Ribbon of maximum coupling length

Figure 79: The completed ribbon of maxi-
mum coupling length. The interfaces of the
tail include t = [I0, I1].

C1 C1 C0Ih I0 I1 I2

Figure 80: The minimum parallel degrees and
maximum perpendicular continuities adjacent
to the potential interfaces of the ribbon are
used to form a one-dimensional Bézier mesh.
The coupling length (and thus the length
of the ribbon) is measured as described in
algorithm 2.

C1 C1 C1Ih I0 I1 I2

Figure 81: By temporarily setting the final
vertex on the one-dimensional mesh to con-
tinuity Cp−1, we observe that this ribbon is
truncated.

A.5 Building intuition: The U-spline basis
The following exercises introduce basic concepts that are utilized in the algorithm for constructing a U-spline
basis, described in detail in section 10.

Exercise 14

The constraint systems of two interfaces I1 and I2 are said to interact if the product of the matrices of
absolute values has nonzero entries. Let Aij = |[R(I1)]ij | and Bij = |[R(I2)]ij | then the constraints
associated with I1 and I2 interact if there exists at least one entry in the matrix

Dij = AikBjk (177)

that is greater than zero. Determine the constraint matrices for the two interfaces R(I1) and R(I2) and
R(U) for the U-spline mesh shown in fig. 82.

C−1 C2 C2 C−1
I1 I2

Figure 82: Three cells with cubic bases on a one-dimensional Bézier mesh, separated by C2 interfaces. The
exercise is to compute the constraint matrices for the two interfaces on this mesh.

72

Answer to Exercise 14

For convenience we express the constraint matrices in terms of the global indexing of the Bernstein
bases on each element. The constraint matrices are

R(I1) =

0 0 0 1 −1 0 0 0 0 0 0 0
0 0 −3 3 3 −3 0 0 0 0 0 0
0 6 −12 6 −6 12 −6 0 0 0 0 0

 (178)

R(I2) =

0 0 0 0 0 0 0 1 −1 0 0 0
0 0 0 0 0 0 −3 3 3 −3 0 0
0 0 0 0 0 6 −12 6 −6 12 −6 0

 (179)

R(U) =
[
R(I1)
R(I2)

]

=


0 0 0 1 −1 0 0 0 0 0 0 0
0 0 −3 3 3 −3 0 0 0 0 0 0
0 6 −12 6 −6 12 −6 0 0 0 0 0
0 0 0 0 0 0 0 1 −1 0 0 0
0 0 0 0 0 0 −3 3 3 −3 0 0
0 0 0 0 0 6 −12 6 −6 12 −6 0

 . (180)

We can see that the interaction matrix defined in eq. (177) has nonzero entries and so the constraint
systems interact. We now seek to determine the number of nonzero coefficients required to construct a
basis vector for the coupled system (see exercise 15).

Exercise 15

We showed that the number of nonzero contiguous Bernstein coefficients required for a basis vector on
an interface in the univariate case can be determined from the continuity of the interface, specifically
ϑI + 2. Restricting the constraint system to the coefficients that are known to be nonzero results in a
rank one system. Consider all the contiguous index sets of size 4 from interface I1 and I2 in fig. 82.
Consider all pairings of these sets where one comes from I1 and the other comes from I2 such that
the combined index set is contiguous. Construct the matrices corresponding to these sets of nonzero
coefficients and determine the rank of the nullspace for each one.

Answer to Exercise 15

The index sets for I1 are {1, 2, 3, 4}, {2, 3, 4, 5}, and {3, 4, 5, 6}. The index sets for I2 are {5, 6, 7, 8},
{6, 7, 8, 9}, and {7, 8, 9, 10}. The paired contiguous index sets a = {1, 2, 3, 4, 5, 6, 7, 8},
b = {2, 3, 4, 5, 6, 7, 8, 9}, c = {3, 4, 5, 6, 7, 8, 9, 10} have corresponding matrices

R(a) =


0 0 1 −1 0 0 0 0
0 −3 3 3 −3 0 0 0
6 −12 6 −6 12 −6 0 0
0 0 0 0 0 0 1 −1
0 0 0 0 0 −3 3 3
0 0 0 0 6 −12 6 −6

 R(b) =


0 1 −1 0 0 0 0 0
−3 3 3 −3 0 0 0 0
−12 6 −6 12 −6 0 0 0

0 0 0 0 0 1 −1 0
0 0 0 0 −3 3 3 −3
0 0 0 6 −12 6 −6 12


(181)

73

R(c) =


1 −1 0 0 0 0 0 0
3 3 −3 0 0 0 0 0
6 −6 12 −6 0 0 0 0
0 0 0 0 1 −1 0 0
0 0 0 −3 3 3 −3 0
0 0 6 −12 6 −6 12 −6

 (182)

which each have a rank 2 nullspace. The paired contiguous index sets d = {2, 3, 4, 5, 6, 7, 8} and
e = {3, 4, 5, 6, 7, 8, 9} have corresponding matrices

R(d) =


0 1 −1 0 0 0 0
−3 3 3 −3 0 0 0
−12 6 −6 12 −6 0 0

0 0 0 0 0 1 −1
0 0 0 0 −3 3 3
0 0 0 6 −12 6 −6

 R(e) =


1 −1 0 0 0 0 0
3 3 −3 0 0 0 0
6 −6 12 −6 0 0 0
0 0 0 0 1 −1 0
0 0 0 −3 3 3 −3
0 0 6 −12 6 −6 12

 (183)

which each have a rank 1 nullspace. Finally, the paired contiguous index set f = {3, 4, 5, 6, 7, 8} with
corresponding matrix

R(f) =


1 −1 0 0 0 0
3 3 −3 0 0 0
6 −6 12 −6 0 0
0 0 0 0 1 −1
0 0 0 −3 3 3
0 0 6 −12 6 −6

 (184)

has a rank 0 nullspace. The six matrices shown in this exercise hint at an important result. The index
sets corresponding to basis vectors for adjacent systems can be used to construct index sets for the
coupled system in certain cases. The index sets d = {2, 3, 4, 5, 6, 7, 8} and e = {3, 4, 5, 6, 7, 8, 9}
generate systems with rank 1 nullspaces while all others do not. In both cases the index sets for the
interface basis vector from each system overlap at a single index.
This turns out to be general. The index set for a contiguous basis vector can be generated by choosing
one basis vector from each interface constraint system such that the index overlap between basis
vectors from adjacent systems is a single index. We can express this as a flood that is seeded with a
basis vector from a single interface system and continues adding basis vectors from interface constraint
systems that share a single index overlap with previously included basis vectors until no more basis
vectors satisfy the overlap requirement. This is a useful result in the univariate case and it can be
shown to agree with previously published work on the construction of mixed-degree splines [57, 65, 58,
64]. This result also motivates the algorithm described in section 10 for constructing contiguous basis
vectors in higher-dimensions, where the minimal overlap of neighboring vertex basis vectors is used to
construct the support of a U-spline basis function.

B Interface continuity constraints in two dimensions
We consider constructing constraints on the interface between two cells on a two-dimensional U-spline mesh.
We consider three cases: the interface between two quadrilateral cells, between a quadrilateral and triangle
cell, and between two triangle cells. Without loss of generality, in each case we express these constraints with
respect to the interface-aligned parameterizations indicated by the axes in fig. 83, fig. 84, and fig. 85. We
recognize that in practice, arbitrary relative rotations of the parameterizations on the adjacent cells must
be accounted for, but for simplicity of exposition we assume the adjacent cells have the aligned coordinate
systems as indicated.

We also assume the existence of a degree-elevation operator D that maps the coefficients c of a Bernstein

74

polynomial of degree p to a new vector of coefficients c̄ of a Bernstein polynomial of degree q > p, thus
representing the original function with a new basis of degree q. Thus,

c̄ = Dp,qc (185)

where the nonzero entries of the matrix operator are given by

Dp,q
ij =

(
q−p
i−j
)(
p
j

)(
q
i

) i ∈[0, q]
j ∈[max(0, i− q + p),min(p, i)].

(186)

B.1 Quadrilateral-quadrilateral interface
Consider two quadrilateral cells a and b on a two-dimensional mesh, separated by interface I as shown in fig. 83.
Each cell has been assigned a box-like parameterization with parent coordinates ξi ∈ [0, 1], i ∈ {0, 1}, ξ ∈ Ω.
These cells have their parameterizations oriented such that the parameters ξ0a on cell a and the parameter
ξ0

b on cell b each point parallel the interface (although in opposite directions). Let η ∈ [0, 1] parameterize the
shared interface I, and be defined as η = ξ0

a = (1− ξ0b). The lengths of the parametric domain on cell a are
`a = [`0a, `1

a], and the lengths of the parametric domain on cell b are `b =
[
`0

b, `1
b
]
. The mapping from the

parent to the parametric domain in each parametric direction on each cell is

s0
a = `0

aξ0
a

s1
a = `1

aξ1
a

s0
b = `0

bξ0
b

s1
b = `1

bξ1
b

(187)

si ∈ [0, `i], i ∈ {0, 1}, s ∈ Ω̂. The degree assigned to cell a is pa = (p0
a, p1

a), and the degree assigned to cell b
is pb =

(
p0

b, p1
b).

a

ξ0
a

ξ1
a

b

ξ0
b

ξ1
b

I

Figure 83: Two cells separated by interface I on a two-dimensional mesh. We consider building the continuity
constraint on the derivative of order n on this interface.

A piecewise polynomial with support over a and b can be written in Bernstein form as

f(ξ) =


p0

a∑
i=0

p1
a∑

j=0
Bp0

a

i (ξ0a)Bp1
a

j (ξ1a)c(i,j)a for ξa ∈ Ωa

p0
b∑

i=0

p1
b∑

j=0
Bp0

b

i (ξ0b)Bp1
b

j (ξ1b)c(i,j)b for ξb ∈ Ωb
. (188)

We can write the continuity constraint on the derivative of order n across the interface as(
1
`1

a

)n p0
a∑

i=0

p1
a∑

j=p1a−n
Bp0

a

i (η)
dnBp1

a

j (0)
dξ1

an c(i,j)a =
(
−1
`1

b

)n p0
b∑

i=0

n∑
j=0

Bp0
b

i (η)
dnBp1

b

j (0)
dξ1

bn c(i,j)b ∀ η ∈ ΩI (189)

75

and if p0
a = p0

b = p‖ we can enforce the above equality constraint by instead enforcing(
1
`1

a

)n p1
a∑

j=p1a−n

dnBp0
a

j (0)
dξ1

an c(i,j)a =
(
−1
`1

b

)n n∑
j=0

dnBp0
b

j (0)
dξ1

bn c(p‖−i,j)b ∀ i ∈ [0, p‖]. (190)

In the case that p0
a 6= p0

b, we define p‖max(I) = max(p0
a, p0

b). The degree-elevation operator D is used
here to map the respective Bernstein coefficents to a degree p‖max(I) Bernstein space on the shared interface.
Substituting in and rearranging yields the constraints in homogeneous form

(
1
`1

a

)n ∑
i∈[0,p0

a]
j∈[p1

a−n,p1
a]

dnBp1
a

j (0)
dξ1

an D
p0

a,p‖max(I)
k,i c(i,j)a−

(
−1
`1

b

)n ∑
i∈[0,p0

b]
j∈[0,n]

dnBp1
b

j (0)
dξ1

bn D
p0

b,p‖max(I)
p
‖
max(I)−k,i

c(i,j)b = 0 ∀
k ∈[0, p‖max(I)]
n ∈[0, ϑI].

(191)

An example of the nonzero constraint equation coefficients on an interface between two quadrilaterals of
degree p = (2, 2) and p = (3, 3) may be seen in fig. 64, with the full constraint matrix listed in eq. (147).

B.2 Quadrilateral-triangle interface
Consider a quadrilateral cell a and a triangle cell b on a two-dimensional mesh, separated by interface I as
shown in fig. 84. The quadrilateral cell has been assigned a box-like parameterization with parent coordinates
ξi

a ∈ [0, 1], i ∈ {0, 1}, and the triangle cell has been assigned a barycentric parameterization with parent
coordinates ξib ∈ [0, 1], i ∈ {0, 1, 2}. These cells have their parameterizations oriented such that the parameter
ξ0

a on the quadrilateral and the parameter ξ1b on the triangle each point parallel the interface (although in
opposite directions). Let η ∈ [0, 1] parameterize the shared interface I, and be defined as η = ξ0

a = (1− ξ1b).
The degree assigned to cell a is pa = (p0

a, p1
a), and the degree assigned to cell b is pb. All barycentric index

tuples in the triangle cell b are expressed with two indices i and j corresponding to barycentric coordinates
ξ1

b and ξ2b. The remaining index corresponding to ξ0b is omitted, but is implicitly defined to be equal to
pb − i− j.

a

ξ0
a

ξ1
a b

ξ1
b
ξ2

b

I

Figure 84: A quadrilateral cell and a triangle cell separated by interface I on a two-dimensional mesh. We consider
building the continuity constraint on the derivative of order 0 on this interface.

A piecewise polynomial with support over a and b can be written in Bernstein form as

f(ξ) =


p1

a∑
j=0

p0
a∑

i=0
Bp0

a

i (ξ0a)Bp1
a

j (ξ1a)c(i,j)a for ξa ∈ Ωa

pb∑
j=0

pb−j∑
i=0

Bp
b

i,j(ξ0
b, ξ1

b, ξ2
b)c(i,j)b for ξb ∈ Ωb

. (192)

76

For an interface that is adjacent to a triangle, we are only required to consider the constraint on the derivative
of order 0. We can write the continuity constraint on the derivative of order 0 across the interface as

p0
a∑

i=0
Bp0

a

i (η)Bp1
a

0 (0)c(i,0)a =
pb∑
i=0

Bp
b

i,0(η, 1− η, 0)c(i,0)b ∀ η ∈ ΩI (193)

and if p0
a = pb = p‖ we can enforce the above equality constraint by instead enforcing

c(i,0)a = c(p‖−i,0)b ∀ i ∈ [0, p‖]. (194)

In the case that p0
a 6= pb, we define p‖max(I) = max(p0

a, pb). The degree-elevation operator D is used here
to map the respective Bernstein coefficients to a degree p‖max(I) Bernstein space on the shared interface.
Substituting in and rearranging yields the constraints in homogeneous form∑

i∈[0,p0a]

D
p0

a,p‖max(I)
k,i c(i,0)a −

∑
i∈[0,pb]

D
pb,p‖max(I)
p
‖
max(I)−k,i

c(i,0)b = 0 ∀ k ∈[0, p‖max(I)] . (195)

B.3 Triangle-triangle interface
Consider two triangle cells a and b on a two-dimensional mesh, separated by interface I as shown in fig. 85. Each
triangle cell has been assigned a barycentric parameterization with parent coordinates ξia ∈ [0, 1], i ∈ {0, 1, 2}
and ξib ∈ [0, 1], i ∈ {0, 1, 2}. These cells have their parameterizations oriented such that the parameters ξ1a

on cell a and the parameter ξ1b on cell b each point parallel the interface (although in opposite directions).
Let η ∈ [0, 1] parameterize the shared interface I, and be defined as η = ξ0

a = (1− ξ1b). The degree assigned
to cell a is pa, and the degree assigned to cell b is pb. All barycentric index tuples on the two triangle cells
are expressed with two indices i and j corresponding to barycentric coordinates ξ1 and ξ2. The remaining
index corresponding to ξ0 is omitted, but is implicitly defined to be equal to p− i− j (where p is the degree
assigned to the respective triangle cell).

a

ξ1
a

ξ2
a

b

ξ1
b
ξ2

b

I

Figure 85: Two triangular cells separated by interface I on a two-dimensional mesh. We consider building the
continuity constraint on the derivative of order 0 on this interface.

A piecewise polynomial with support over a and b can be written in Bernstein form as

f(ξ) =


pa∑
j=0

pa−j∑
i=0

Bp
a

i,j(ξ0
a, ξ1

a, ξ2
a)c(i,j)a for ξa ∈ Ωa

pb∑
j=0

pb−j∑
i=0

Bp
b

i,j(ξ0
b, ξ1

b, ξ2
b)c(i,j)b for ξb ∈ Ωb

.

(196)

For an interface that is adjacent to a triangle, we are only required to consider the constraint on the
derivative of order 0. We can write the continuity constraint on the derivative of order 0 across the interface as

pa∑
i=0

Bp
a

pa−i,0(1− η, η, 0)c(pa−i,0)a =
pb∑
i=0

Bp
b

i,0(η, 1− η, 0)c(i,0)b ∀ η ∈ ΩI (197)

77

and if pa = pb = p‖ we can enforce the above equality constraint by instead enforcing

c(i,0)a = c(p‖−i,0)b ∀ i ∈ [0, p‖]. (198)

In the case that pa 6= pb, we define p‖max(I) = max(pa, pb). The degree-elevation operator D is used here
to map the respective Bernstein coefficients to a degree p‖max(I) Bernstein space on the shared interface.
Substituting in and rearranging yields the constraints in homogeneous form∑

i∈[0,pa]

D
pa,p‖max(I)
k,i c(pa−i,0)a −

∑
i∈[0,pb]

D
pb,p‖max(I)
p
‖
max(I)−k,i

c(i,0)b = 0 ∀ k ∈[0, p‖max(I)] . (199)

C Basis vectors in arbitrary dimensions
We now describe how to buid basis vectors on a k-cell from a d-dimensional Bézier mesh, 0 ≤ k ≤ d. The
description is recursive, and we begin with the base case: the basis vectors on a d-cell are the Bernstein
functions which span the Bernstein space assigned to the element. Then, the basis vectors on a k-cell ak,
0 ≤ k < d are constructed as follows.

C.1 Composite k-cell basis vectors
Composite k-cell basis vectors are formed from multiple adjacent (k + 1)-cell basis vectors. Each composite
k-cell basis vector is associated with a choice of inclusion distances INCinc1,...,incd−k (section 8.3.2) and alignment
index i ∈ ID(ak) (section 8.3.3). An example of selecting a choice of inclusion distances is shown in fig. 23.

We begin by placing indexed submesh domains denoted Ωab over each set of elements adjacent to each
(k + 1)-cell adjacent to ak (with their origins set to v ∈ ADJ0(ak)), and then partitioning the mapped index
sets of the basis vectors associated with each (k + 1)-cell bk+1 into equivalence classes with respect to the
parallel equivalence relation on the (k + 1)-cell BG(bk+1)/$‖bk+1 . We then identify the equivalence classes for
which the minimum projection onto the (k + 1)-cell is less than or equal to INCinc1,...,incd−k

bk+1 :

EBG‖inc1,...,incd−k
(bk+1) =

{
EBG(bk+1) ∈ BG(bk+1)/$‖bk+1 :

min
g∈G

([
π
‖
bk+1(g)

]
sr

)
≤ INCinc1,...,incd−k

bk+1 ,G ∈ EBG(bk+1)
}

(200)

where sr = s
‖
Ωab(bk+1) \ s‖Ωab(ak) is the parameter coordinate parallel to bk+1 and perpendicular to ak. An

example of these equivalence classes is shown in fig. 24.
Let ck+1

⊥,j ∈ PC(ak, bk+1), j ∈
{

1, ...,
∣∣PC(ak, bk+1)

∣∣}. (PC is defined in section 3.1.1.) We form the sets
containing all indices whose associated cell is adjacent to bk+1 and whose associated submesh Greville point
is a part of elements of EBG‖inc1,...,incd−k

(ck+1
⊥,j)

ID⊥ck+1
⊥,j

=
{

i ∈ ID(E) : E ∈ ADJd(bk+1), g(i) ∈ G ∈ EBG ∈ EBG‖inc1,...,incd−k
(ck+1
⊥,j)

}
. (201)

We form the set of Greville points that are fixed points of the parallel projectors onto ck+1
⊥,j :

G⊥ =
⋃

j∈{1,...,|PC(ak,bk+1)|}

{
g(i) : g(i) = π⊥bk+1(g(i)), i ∈ ID⊥ck+1

⊥,j

}
. (202)

We take all basis vectors whose projections onto the (k + 1)-cells perpendicular to bk+1 lie in G⊥:

BG⊥inc1,...,incd−k
(bk+1) =

{
G ∈ EBG ∈ EBG‖inc1,...,incd−k

(bk+1) : ∀g∈G π⊥bk+1(g) ⊆ G⊥
}
. (203)

In the case that PC(ak, bk+1) = ∅ then BG⊥inc1,...,incd−k
(bk+1) = EBG‖inc1,...,incd−k

(bk+1). In fig. 25, we see an
example of these basis vector subsets marked with dotted lines.

78

The set of indices associated with BG⊥inc1,...,incd−k
(bk+1) is

IDinc1,...,incd−k

bk+1 =
⋃

G∈BG⊥inc1,...,incd−k
(bk+1)

{
i ∈ ID(E) : E ∈ ADJd(bk+1), g(i) ∈ G

}
. (204)

The full set of indices associated with incj , j ∈ {1, ..., d− k} is

IDinc1,...,incd−k

ak =
⋃

bk+1∈ADJk+1(ak)

IDinc1,...,incd−k

bk+1 . (205)

Given an alignment index i ∈ ID(ak) and a choice of inc1, ..., incd−k, we can now define the index set for the
composite k-cell basis vector as

IDinc1,...,incd−k,i
ak = ID(HBVi(ak)) ∩ IDinc1,...,incd−k

ak . (206)

We consider all possible alignment indices i ∈ ID(ak) and all possible values of inc1, ..., incd−k on ak to
construct the set of all composite k-cell basis vectors. We use BV′′(ak) to represent this set. The full set of
indices contained in this set is

UIDak =
⋃

n∈BV′′(ak)

ID(n). (207)

An example of a set of composite vertex basis vectors is shown in fig. 26.

C.2 Simple k-cell basis vectors
Each simple k-cell basis vector is formed from a single (k+ 1)-cell basis vector on an adjacent (k+ 1)-cell, one
for each (k + 1)-cell basis vector whose index set is not subsumed by UIDak . We use BV′(ak) to represent this
set:

BV′(ak) =
⋃

bk+1∈ADJk+1(ak)

{
n ∈ BV(bk+1) : ID(n) * UIDak

}
. (208)

An example of a set of simple vertex basis vectors is shown in fig. 27.

C.3 The full set of k-cell basis vectors
The full set of k-cell basis vectors is found by combining the set of composite k-cell basis vectors with the set
of simple k-cell basis vectors:

BV(ak) = BV′′(ak) ∪ BV′(ak). (209)

Once the index set for each k-cell basis vector has been obtained, the constraint system can be solved to
obtain the coefficient values and construct the basis vector.

D Ribbon processing
A ribbon of maximum coupling length is constructed on a mesh beginning at an origin (d− 2)-cell o adjacent
to an initial Bernstein coefficient, and then adding interfaces Ij one by one beginning at the origin (d− 2)-cell
to form the tail t. We use |t| to represent the number of interfaces present in the tail t. As shown in figs. 86
and 87, to determine the length of the tail (or coupling distance) |t| we process a sequence of connected
interfaces where the continuity assigned to each traversed (d− 2)-cell is set to ϑmax

j = max(ϑ0
j , ϑ

1
j) and the

degree of each traversed interface is set to pmin
Ij = p

‖,⊥
min(Ij ,w),w ∈ ADJd−2(Ij) ∩ skel(r).

Conceptually, this process extracts a one-dimensional U-spline mesh (where the vertices and edges of the
one-dimensional mesh correspond to the (d− 2)-cells and interfaces of the parent mesh), and determines how
far the specified Bernstein coefficient couples with the neighboring coefficients assigned to the edges in the
one-dimensional mesh given the continuity constraints assigned to each vertex. Algorithm 2 describes the
procedure used to determine the edges in the ribbon tail leveraging the notation introduced in figs. 86 and 87.

79

The input parameters of the procedure include the interface at the head of the ribbon Ih, the origin vertex o,
and iIh is the index of the initial Bernstein coefficient in Ih. Several examples of ribbons of maximum coupling
length are shown in fig. 88.

A ribbon of length |t| is said to be truncated if ϑmax
|t| < pmin

[t]|t|−1
− 1 and the value of the Bernstein index

i computed for the final interface [t]|t|−1 is greater than zero, as shown in algorithm 2. The bottom two
examples in fig. 88 show truncated ribbons.

See appendix A.4 for an intuitive example of constructing a ribbon of maximum coupling length.

Head interface Ih

Tail interfaces t

Origin (d− 2)-cell o
Initial Bernstein coefficient

I0 I1 Ij−1Ih

ϑ1
0 ϑ1

1 ϑ1
2 ϑ1

j

ϑ0
0 ϑ0

1 ϑ0
2 ϑ0

j

Figure 86: The features of a ribbon of maximum coupling length on a two-dimensional U-spline mesh. The
perpendicular interfaces on the jth vertex are assigned continuities ϑ0

j and ϑ1
j .

pmin
Ij = p

‖
min(Ij)

ϑmax
j = max(ϑ0

j , ϑ
1
j)

I0 I1 Ij−1Ih ϑmax
0 ϑmax

1 ϑmax
2 ϑmax

j

pmin
Ih pmin

I0 pmin
I1 pmin

Ij−100 0 0

Figure 87: A ribbon that has been collapsed into a one-dimensional U-spline mesh. The continuity assigned to
each vertex is the maximum of the perpendicular interfaces in the two-dimensional mesh. The degree of each
one-dimensional cell is the minimum of the parallel degrees of the adjoining cells from the two-dimensional mesh,
in the direction parallel to the ribbon. The Bernstein coefficients are labeled as they are indexed in algorithm 2.

80

Algorithm 2 Build a ribbon r of maximum coupling length, starting at head interface Ih, origin (d− 2)-cell
o, and initial Bernstein index iIh (see fig. 86 and fig. 87 for notation).
1: procedure BuildRibbonOfMaximumCouplingLength(Ih, o, iIh) . 0 ≤ iIh ≤ pmin

Ih
2: t← [] . The array that will contain the interfaces in the tail.
3: j ← 0 . Counter for the length of the tail.
4: trunc← False . If the ribbon is found to be truncated, this will be set to true later.
5: i← iIh . The Bernstein index counter used to determine the length of the ribbon.
6: I−1 ← Ih . The index used in the loop to reference the head interface.
7: w0 ← o . The index used in the loop to reference the origin (d− 2)-cell.
8: // Loop until the maximum coupling length is reached.
9: loop
10: iprev ← i . Save the Bernstein index on interface Ij−1 for later reference.
11: // Get the max smoothness on the interfaces perpendicular to the ribbon on wj .
12: ϑmax

j ← max(ϑ0
j , ϑ

1
j) . In other words, ϑmax

j ← maxI′∈ADJd−1(wj)\{Ij−1,Ij}(ϑ
I′).

13: pmin
j−1 ← p

‖
min(Ij−1) . Get the min parallel degree on the previous interface.

14: i← i + ϑmax
j − pmin

j−1 . We compute the Bernstein index for interface Ij .
15: if i ≥ 0 then
16: [t]j ← Ij . If the Bernstein index for Ij is valid, then we add Ij to the tail.
17: j ← j + 1 . Increment the number of interfaces in the tail.
18: else
19: // Here, iprev refers to the value of i on [t]|t|−1, the final interface of the tail t.
20: if iprev > 0 then
21: // Since iprev > 0, the only way i on interface Ij to be less than 0 is for the
22: // final interface to have reduced continuity.
23: trunc← True
24: end if
25: break . Break out of the loop.
26: end if
27: end loop
28: r← {Ih, o, t} . Assemble the ribbon.
29: return r, trunc . Return the result.
30: end procedure

C2

30

C2 C2 C2

3 3 3

C1

20

C1 C1

2 2

C1

30

C1 C0

1 2

C2

30

C2 C1

3 3

0 0 0 0

0 0

0 0

0 0

Figure 88: Several examples of the construction of ribbons of maximum coupling length. The Bernstein index
marked by a hollow circle in each cell is the index referenced by iprev in each loop of algorithm 2. Note that the
bottom two ribbons are truncated.

81

E U-spline test cases with Bézier extraction coefficients
E.1 U-spline extraction coefficients near a supersmooth interface

Continuity C2

Continuity C3

1

5

9

2

6

10

3

7

11

4

8

12

Figure 89: A four-by-three cubic U-spline mesh with C2 continuity on all interior edges except for one which has
C3 continuity, forming a supersmooth interface. The Bernstein coefficients of the highlighted basis function are
listed in table 2.

(3, 3)1 (0, 3)2 (1, 3)2 (2, 3)2 (3, 3)2 (0, 3)3 (1, 3)3 (2, 3)3 (3, 3)3 (0, 3)4

3
88

3
88

3
44

3
22

2
11

2
11

5
22

1
4

17
88

17
88

(1, 3)4 (3, 0)5 (3, 1)5 (3, 2)5 (3, 3)5 (0, 0)6 (1, 0)6 (2, 0)6 (3, 0)6 (0, 1)6

3
22

3
88

3
44

3
22

21
176

3
88

3
44

3
22

2
11

3
44

(1, 1)6 (2, 1)6 (3, 1)6 (0, 2)6 (1, 2)6 (2, 2)6 (3, 2)6 (0, 3)6 (1, 3)6 (2, 3)6

3
22

3
11

4
11

3
22

3
11

6
11

8
11

21
176

21
88

21
44

(3, 3)6 (0, 0)7 (1, 0)7 (2, 0)7 (3, 0)7 (0, 1)7 (1, 1)7 (2, 1)7 (3, 1)7 (0, 2)7

7
11

2
11

5
22

1
4

17
88

4
11

5
11

1
2

17
44

8
11

(1, 2)7 (2, 2)7 (3, 2)7 (0, 3)7 (1, 3)7 (2, 3)7 (3, 3)7 (0, 0)8 (1, 0)8 (0, 1)8

10
11 1 17

22
7
11

35
44

7
8

119
176

17
88

3
22

17
44

(1, 1)8 (0, 2)8 (1, 2)8 (0, 3)8 (1, 3)8 (3, 0)9 (3, 1)9 (0, 0)10 (1, 0)10 (2, 0)10

3
11

17
22

6
11

119
176

21
44

21
176

9
88

21
176

21
88

21
44

(3, 0)10 (0, 1)10 (1, 1)10 (2, 1)10 (3, 1)10 (0, 0)11 (1, 0)11 (2, 0)11 (3, 0)11 (0, 1)11

7
11

9
88

9
44

9
22

6
11

7
11

35
44

7
8

119
176

6
11

(1, 1)11 (2, 1)11 (3, 1)11 (0, 0)12 (1, 0)12 (0, 1)12 (1, 1)12

15
22

3
4

51
88

119
176

21
44

51
88

9
22

Table 2: The values of the nonzero Bernstein coefficients of the U-spline basis function highlighted in fig. 89.

82

E.2 U-spline extraction coefficients with non-rectangular support

1

7

13

2

8

14

3

9

15

4

10

16

5

11

17

6

12

18

19 20 21 22 23 24

25 26 27 28 29 30

Continuity C2

Continuity C3

Ray of maximum coupling length

Figure 90: An example of a U-spline basis function that has a non-rectangular shape due to the close proximity of
two continuity transitions near supersmooth interfaces. Notice the two perpendicular transition ribbons, starting
at the vertices adjacent to the supersmooth interfaces, which touch at a common endpoint. This is an example
of a basis function which is not possible with T-splines, which require basis functions to have a tensor product
structure. The Bernstein coefficients of the highlighted basis function are listed in table 3.

(a) The control points for a linear parameterization
of the mesh in fig. 90. The highlighted control point
corresponds to the highlighted basis function.

(b) Contour plot of the basis function whose nonzero
Bernstein coefficients are highlighted in fig. 90.

Figure 91: Control points and basis function contours for the U-spline in fig. 90.

83

(3, 3)2 (0, 3)3 (1, 3)3 (2, 3)3 (3, 3)3 (0, 3)4 (1, 3)4 (2, 3)4 (3, 3)4 (0, 3)5

1
80

1
80

1
40

1
20

1
20

1
20

1
20

1
40

1
80

1
80

(3, 0)8 (3, 1)8 (3, 2)8 (3, 3)8 (0, 0)9 (1, 0)9 (2, 0)9 (3, 0)9 (0, 1)9 (1, 1)9

1
80

1
40

1
20

1
10

1
80

1
40

1
20

1
20

1
40

1
20

(2, 1)9 (3, 1)9 (0, 2)9 (1, 2)9 (2, 2)9 (3, 2)9 (0, 3)9 (1, 3)9 (2, 3)9 (3, 3)9

1
10

1
10

1
20

1
10

1
5

1
5

1
10

1
5

2
5

33
80

(0, 0)10 (1, 0)10 (2, 0)10 (3, 0)10 (0, 1)10 (1, 1)10 (2, 1)10 (3, 1)10 (0, 2)10 (1, 2)10

1
20

1
20

1
40

1
80

1
10

1
10

1
20

1
40

1
5

1
5

(2, 2)10 (3, 2)10 (0, 3)10 (1, 3)10 (2, 3)10 (3, 3)10 (0, 0)11 (0, 1)11 (0, 2)11 (0, 3)11

1
10

1
20

33
80

17
40

1
4

3
20

1
80

1
40

1
20

3
20

(1, 3)11 (2, 3)11 (3, 3)11 (0, 3)12 (3, 0)14 (3, 1)14 (3, 2)14 (3, 3)14 (0, 0)15 (1, 0)15

1
20

1
40

1
80

1
80

1
10

3
20

9
40

17
80

1
10

1
5

(2, 0)15 (3, 0)15 (0, 1)15 (1, 1)15 (2, 1)15 (3, 1)15 (0, 2)15 (1, 2)15 (2, 2)15 (3, 2)15

2
5

33
80

3
20

3
10

3
5

5
8

9
40

9
20

9
10

19
20

(0, 3)15 (1, 3)15 (2, 3)15 (3, 3)15 (0, 0)16 (1, 0)16 (2, 0)16 (3, 0)16 (0, 1)16 (1, 1)16

17
80

17
40

17
20

9
10

33
80

17
40

1
4

3
20

5
8

13
20

(2, 1)16 (3, 1)16 (0, 2)16 (1, 2)16 (2, 2)16 (3, 2)16 (0, 3)16 (1, 3)16 (2, 3)16 (3, 3)16

2
5

1
4

19
20 1 13

20
17
40

9
10

19
20

5
8

33
80

(0, 0)17 (1, 0)17 (2, 0)17 (3, 0)17 (0, 1)17 (1, 1)17 (2, 1)17 (3, 1)17 (0, 2)17 (1, 2)17

3
20

1
20

1
40

1
80

1
4

1
10

1
20

1
40

17
40

1
5

(2, 2)17 (3, 2)17 (0, 3)17 (1, 3)17 (2, 3)17 (3, 3)17 (0, 0)18 (0, 1)18 (0, 2)18 (0, 3)18

1
10

1
20

33
80

1
5

1
10

1
20

1
80

1
40

1
20

1
20

(3, 0)20 (3, 1)20 (3, 2)20 (3, 3)20 (0, 0)21 (1, 0)21 (2, 0)21 (3, 0)21 (0, 1)21 (1, 1)21

17
80

1
5

1
10

1
20

17
80

17
40

17
20

9
10

1
5

2
5

(2, 1)21 (3, 1)21 (0, 2)21 (1, 2)21 (2, 2)21 (3, 2)21 (0, 3)21 (1, 3)21 (2, 3)21 (3, 3)21

4
5

17
20

1
10

1
5

2
5

17
40

1
20

1
10

1
5

17
80

(0, 0)22 (1, 0)22 (2, 0)22 (3, 0)22 (0, 1)22 (1, 1)22 (2, 1)22 (3, 1)22 (0, 2)22 (1, 2)22

9
10

19
20

5
8

33
80

17
20

9
10

3
5

2
5

17
40

9
20

(2, 2)22 (3, 2)22 (0, 3)22 (1, 3)22 (2, 3)22 (3, 3)22 (0, 0)23 (1, 0)23 (2, 0)23 (3, 0)23

3
10

1
5

17
80

9
40

3
20

1
10

33
80

1
5

1
10

1
20

(0, 1)23 (1, 1)23 (2, 1)23 (3, 1)23 (0, 2)23 (1, 2)23 (2, 2)23 (3, 2)23 (0, 3)23 (1, 3)23

2
5

1
5

1
10

1
20

1
5

1
10

1
20

1
40

1
10

1
20

(2, 3)23 (3, 3)23 (0, 0)24 (0, 1)24 (0, 2)24 (0, 3)24 (3, 0)26 (0, 0)27 (1, 0)27 (2, 0)27

1
40

1
80

1
20

1
20

1
40

1
80

1
20

1
20

1
10

1
5

(3, 0)27 (0, 0)28 (1, 0)28 (2, 0)28 (3, 0)28 (0, 0)29 (1, 0)29 (2, 0)29 (3, 0)29 (0, 0)30

17
80

17
80

9
40

3
20

1
10

1
10

1
20

1
40

1
80

1
80

Table 3: The values of the nonzero Bernstein coefficients of the U-spline basis function highlighted in fig. 90.

84

E.3 U-spline extraction coefficients on mesh equivalent to analysis-suitable T-
spline with non-crossing edge extensions

1

7

13

2

8

14

3

9

15

4

10

16

5

11

17

6

12

18

19 20 21 22 23 24

25 26 27 28 29 30

Continuity C2

Continuity C3

Ray of maximum coupling length

Figure 92: Basis function on a U-spline that is equivalent to an analysis-suitable T-spline [55, 35]. The T-mesh of
the equivalent T-spline is shown in fig. 94. Note that the ribbons of maximum coupling length in this example are
analogous to the non-crossing T-junction extensions which guarantee an analysis-suitable T-spline. The Bernstein
coefficients of the highlighted basis function are listed in table 4.

(a) The control points for a linear parameterization
of the mesh in fig. 92. The highlighted control point
corresponds to the highlighted basis function.

(b) Contour plot of the basis function whose nonzero
Bernstein coefficients are highlighted in fig. 92.

Figure 93: Control points and basis function contours for the U-spline in fig. 92.

85

0 0 0 0 1 2 3 4 5 6 6 6 6
0
0
0
0
1
2
3
4
5
5
5
5

Figure 94: The T-mesh for a cubic T-spline which is equivalent to the U-spline mesh in fig. 92 [55]. The area
highlighted in yellow corresponds to the Bézier elements of the U-spline mesh. The dotted lines next to the
T-junctions are the lines of reduced continuity, where there is still C2 continuity [53]. It is notable to observe
that the vertices associated with the T-junctions on the T-mesh are not the same as the vertices adjacent to the
supersmooth interfaces on the U-spline mesh, due to the lines of reduced continuity.

(3, 3)8 (0, 3)9 (1, 3)9 (2, 3)9 (3, 3)9 (0, 3)10 (1, 3)10 (2, 3)10 (3, 3)10 (0, 3)11

1
18

1
18

1
9

2
9

17
72

17
72

1
4

1
6

1
9

1
9

(1, 3)11 (2, 3)11 (3, 3)11 (0, 3)12 (3, 0)14 (3, 1)14 (3, 2)14 (3, 3)14 (0, 0)15 (1, 0)15

1
18

1
36

1
72

1
72

1
18

1
9

2
9

2
9

1
18

1
9

(2, 0)15 (3, 0)15 (0, 1)15 (1, 1)15 (2, 1)15 (3, 1)15 (0, 2)15 (1, 2)15 (2, 2)15 (3, 2)15

2
9

17
72

1
9

2
9

4
9

17
36

2
9

4
9

8
9

17
18

(0, 3)15 (1, 3)15 (2, 3)15 (3, 3)15 (0, 0)16 (1, 0)16 (2, 0)16 (3, 0)16 (0, 1)16 (1, 1)16

2
9

4
9

8
9

17
18

17
72

1
4

1
6

1
9

17
36

1
2

(2, 1)16 (3, 1)16 (0, 2)16 (1, 2)16 (2, 2)16 (3, 2)16 (0, 3)16 (1, 3)16 (2, 3)16 (3, 3)16

1
3

2
9

17
18 1 2

3
4
9

17
18 1 2

3
4
9

(0, 0)17 (1, 0)17 (2, 0)17 (3, 0)17 (0, 1)17 (1, 1)17 (2, 1)17 (3, 1)17 (0, 2)17 (1, 2)17

1
9

1
18

1
36

1
72

2
9

1
9

1
18

1
36

4
9

2
9

(2, 2)17 (3, 2)17 (0, 3)17 (1, 3)17 (2, 3)17 (3, 3)17 (0, 0)18 (0, 1)18 (0, 2)18 (0, 3)18

1
9

1
18

4
9

2
9

1
9

1
18

1
72

1
36

1
18

1
18

(3, 0)20 (3, 1)20 (3, 2)20 (3, 3)20 (0, 0)21 (1, 0)21 (2, 0)21 (3, 0)21 (0, 1)21 (1, 1)21

2
9

2
9

1
9

1
18

2
9

4
9

8
9

17
18

2
9

4
9

(2, 1)21 (3, 1)21 (0, 2)21 (1, 2)21 (2, 2)21 (3, 2)21 (0, 3)21 (1, 3)21 (2, 3)21 (3, 3)21

8
9

17
18

1
9

2
9

4
9

17
36

1
18

1
9

2
9

17
72

(0, 0)22 (1, 0)22 (2, 0)22 (3, 0)22 (0, 1)22 (1, 1)22 (2, 1)22 (3, 1)22 (0, 2)22 (1, 2)22

17
18 1 2

3
4
9

17
18 1 2

3
4
9

17
36

1
2

(2, 2)22 (3, 2)22 (0, 3)22 (1, 3)22 (2, 3)22 (3, 3)22 (0, 0)23 (1, 0)23 (2, 0)23 (3, 0)23

1
3

2
9

17
72

1
4

1
6

1
9

4
9

2
9

1
9

1
18

(0, 1)23 (1, 1)23 (2, 1)23 (3, 1)23 (0, 2)23 (1, 2)23 (2, 2)23 (3, 2)23 (0, 3)23 (1, 3)23

4
9

2
9

1
9

1
18

2
9

1
9

1
18

1
36

1
9

1
18

(2, 3)23 (3, 3)23 (0, 0)24 (0, 1)24 (0, 2)24 (0, 3)24 (3, 0)26 (0, 0)27 (1, 0)27 (2, 0)27

1
36

1
72

1
18

1
18

1
36

1
72

1
18

1
18

1
9

2
9

(3, 0)27 (0, 0)28 (1, 0)28 (2, 0)28 (3, 0)28 (0, 0)29 (1, 0)29 (2, 0)29 (3, 0)29 (0, 0)30

17
72

17
72

1
4

1
6

1
9

1
9

1
18

1
36

1
72

1
72

Table 4: The values of the nonzero Bernstein coefficients of the U-spline basis function highlighted in fig. 92.

86

E.4 U-spline extraction coefficients near an extraordinary vertex

Continuity C1
Continuity C0

Continuity C2

1

2

3

4

5

6

9

8

7

25

22

19

20

23

26

27

24

21

18

15

12

11

14

17

16

13

10

Figure 95: The support of one of the basis functions on a cubic mesh with a valence-3 extraordinary vertex.
The edges about the extraordinary vertex are creased in a stair-step pattern, starting at C0 and incrementally
increasing continuity until C2. The Bernstein coefficients of the highlighted basis function are listed in table 5.

(a) The control points for a linear parameterization
of the mesh in fig. 95. The highlighted control point
corresponds to the highlighted basis function.

(b) Contour plot of the basis function whose
nonzero Bernstein coefficients are highlighted in
fig. 95.

Figure 96: Control points and basis function contours for the U-spline in fig. 95.

87

(3, 0)2 (0, 0)3 (1, 0)3 (2, 0)3 (3, 0)3 (3, 0)5 (3, 1)5 (3, 2)5 (3, 3)5 (0, 0)6

1
16

1
16

1
8

1
4

1
4

7
32

1
4

1
8

1
16

7
32

(1, 0)6 (2, 0)6 (3, 0)6 (0, 1)6 (1, 1)6 (2, 1)6 (3, 1)6 (0, 2)6 (1, 2)6 (2, 2)6

7
16

7
8

7
8

1
4

1
2 1 1 1

8
1
4

1
2

(3, 2)6 (0, 3)6 (1, 3)6 (2, 3)6 (3, 3)6 (3, 2)8 (3, 3)8 (0, 2)9 (1, 2)9 (2, 2)9

1
2

1
16

1
8

1
4

1
4

3
16

7
32

3
16

3
8

3
4

(3, 2)9 (0, 3)9 (1, 3)9 (2, 3)9 (3, 3)9 (0, 0)10 (1, 0)10 (2, 0)10 (3, 0)10 (0, 0)11

3
4

7
32

7
16

7
8

7
8

1
4

1
4

1
8

1
16

1
16

(0, 0)13 (1, 0)13 (2, 0)13 (3, 0)13 (0, 1)13 (1, 1)13 (2, 1)13 (3, 1)13 (0, 2)13 (1, 2)13

7
8

7
8

7
16

7
32 1 1 1

2
1
4

1
2

1
2

(2, 2)13 (3, 2)13 (0, 3)13 (1, 3)13 (2, 3)13 (3, 3)13 (0, 0)14 (0, 1)14 (0, 2)14 (0, 3)14

1
4

1
8

1
4

1
4

1
8

1
16

7
32

1
4

1
8

1
16

(0, 2)16 (1, 2)16 (2, 2)16 (3, 2)16 (0, 3)16 (1, 3)16 (2, 3)16 (3, 3)16 (0, 2)17 (0, 3)17

3
4

3
4

3
8

3
16

7
8

7
8

7
16

7
32

3
16

7
32

Table 5: The values of the nonzero Bernstein coefficients of the U-spline basis function highlighted in fig. 95.

E.5 U-spline extraction coefficients near a triangle

2

5

9

1

4

7

3

6

10
8

Continuity C0

Continuity C1

Figure 97: The support of basis functions on a mesh that includes triangles. The values of the control points of
the highlighted functions are listed in table 6 and table 7.

88

(a) The control points for a linear param-
eterization of the mesh in fig. 97. The
highlighted control point corresponds to
the left highlighted basis function.

(b) Contour plot of the basis function
whose nonzero Bernstein coefficients are
highlighted on the left in fig. 97.

Figure 98: Control points and basis function contours for the U-spline basis function highlighted on the left in
fig. 97.

(a) The control points for a linear param-
eterization of the mesh in fig. 97. The
highlighted control point corresponds to
the right highlighted basis function.

(b) Contour plot of the basis function
whose nonzero Bernstein coefficients are
highlighted on the right in fig. 97.

Figure 99: Control points and basis function contours for the U-spline basis function highlighted on the right in
fig. 97.

(2, 2)4 (0, 2)5 (2, 0)7 (0, 2)8 (0, 0)9

1 1 1 1 1

Table 6: The values of the nonzero Bernstein coefficients of the U-spline basis function highlighted in fig. 97 on
the left.

89

(2, 2)1 (0, 2)2 (1, 2)2 (2, 2)2 (0, 2)3 (2, 0)4 (2, 1)4 (0, 0)5 (1, 0)5 (2, 0)5

1
4

1
4

1
2

1
4

1
4

1
4

1
2

1
4

1
2

1
4

(0, 1)5 (1, 1)5 (2, 1)5 (1, 2)5 (2, 2)5 (0, 0)6 (0, 1)6 (0, 2)6 (1, 0)9 (2, 0)9

1
2 1 1

2
1
2

1
4

1
4

1
2

1
4

1
2

1
4

(0, 0)10

1
4

Table 7: The values of the nonzero Bernstein coefficients of the U-spline basis function highlighted in fig. 97 on
the right.

References
[1] M. Aigner et al. “Swept Volume Parameterization for Isogeometric Analysis”. In: Mathematics of Surfaces

XIII. Ed. by Edwin R. Hancock, Ralph R. Martin, and Malcolm A. Sabin. Lecture Notes in Computer
Science 5654. Springer Berlin Heidelberg, 2009, pp. 19–44. isbn: 978-3-642-03595-1 978-3-642-03596-8.
url: http://link.springer.com/chapter/10.1007/978-3-642-03596-8_2 (visited on 08/14/2015).

[2] Peter Alfeld. “Bivariate spline spaces and minimal determining sets”. In: Journal of Computational and
Applied Mathematics 119.1 (July 1, 2000), pp. 13–27. issn: 0377-0427. doi: 10.1016/S0377-0427(00)00369-
1. url: http://www.sciencedirect.com/science/article/pii/S0377042700003691 (visited on 04/11/2018).

[3] Peter Alfeld and Larry L. Schumaker. “Smooth macro-elements based on Clough-Tocher triangle
splits”. In: Numerische Mathematik 90.4 (Feb. 1, 2002), pp. 597–616. issn: 0945-3245. doi: 10.1007/
s002110100304. url: https://doi.org/10.1007/s002110100304 (visited on 10/30/2018).

[4] J. H. Argyris, I. Fried, and D. W. Scharpf. “The TUBA Family of Plate Elements for the Matrix
Displacement Method”. In: The Aeronautical Journal 72.692 (Aug. 1968), pp. 701–709. issn: 0001-9240,
2059-6464. doi: 10.1017/S000192400008489X. (Visited on 10/30/2018).

[5] Gerard Awanou, Ming-jun Lai, and Paul Wenston. The Multivariate Spline Method for Scattered Data
Fitting . . . 2005.

[6] Y. Bazilevs et al. “Isogeometric analysis using T-splines”. In: Computer Methods in Applied Mechanics
and Engineering. Computational Geometry and Analysis 199.5 (Jan. 1, 2010), pp. 229–263. issn: 0045-
7825. doi: 10.1016/j.cma.2009.02.036. url: http://www.sciencedirect.com/science/article/pii/
S0045782509000875 (visited on 02/04/2019).

[7] Michel Berkelaar, Kjell Eikland, and Peter Notebaert. lp_solve. Version 5.1.0.0. May 2004. url: http:
//lpsolve.sourceforge.net/5.5/.

[8] Michael J. Borden et al. “Isogeometric finite element data structures based on Bézier extraction of
NURBS”. In: International Journal for Numerical Methods in Engineering 87.1 (2011), pp. 15–47. issn:
1097-0207. doi: 10.1002/nme.2968. url: https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.2968
(visited on 02/04/2019).

[9] Marcel Campen and Denis Zorin. “Similarity Maps and Field-guided T-splines: A Perfect Couple”. In:
ACM Trans. Graph. 36.4 (July 2017), 91:1–91:16. issn: 0730-0301. doi: 10.1145/3072959.3073647. url:
http://doi.acm.org/10.1145/3072959.3073647 (visited on 05/07/2018).

[10] Fehmi Cirak, Michael Ortiz, and Peter Schröder. “Subdivision surfaces: a new paradigm for thin-shell
finite-element analysis”. In: International Journal for Numerical Methods in Engineering 47.12 (Apr. 30,
2000), pp. 2039–2072. issn: 1097-0207. doi: 10.1002/(SICI)1097-0207(20000430)47:12<2039::AID-
NME872>3.0.CO;2-1. (Visited on 10/24/2018).

[11] Elaine Cohen, Tom Lyche, and Richard Riesenfeld. “A B-spline-like basis for the Powell-Sabin 12-split
based on simplex splines”. In: Mathematics of Computation 82.283 (2013), pp. 1667–1707. issn: 0025-
5718, 1088-6842. doi: 10.1090/S0025-5718-2013-02664-6. url: https://www.ams.org/home/page/
(visited on 10/30/2018).

90

http://link.springer.com/chapter/10.1007/978-3-642-03596-8_2
https://doi.org/10.1016/S0377-0427(00)00369-1
https://doi.org/10.1016/S0377-0427(00)00369-1
http://www.sciencedirect.com/science/article/pii/S0377042700003691
https://doi.org/10.1007/s002110100304
https://doi.org/10.1007/s002110100304
https://doi.org/10.1007/s002110100304
https://doi.org/10.1017/S000192400008489X
https://doi.org/10.1016/j.cma.2009.02.036
http://www.sciencedirect.com/science/article/pii/S0045782509000875
http://www.sciencedirect.com/science/article/pii/S0045782509000875
http://lpsolve.sourceforge.net/5.5/
http://lpsolve.sourceforge.net/5.5/
https://doi.org/10.1002/nme.2968
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.2968
https://doi.org/10.1145/3072959.3073647
http://doi.acm.org/10.1145/3072959.3073647
https://doi.org/10.1002/(SICI)1097-0207(20000430)47:12<2039::AID-NME872>3.0.CO;2-1
https://doi.org/10.1002/(SICI)1097-0207(20000430)47:12<2039::AID-NME872>3.0.CO;2-1
https://doi.org/10.1090/S0025-5718-2013-02664-6
https://www.ams.org/home/page/

[12] T. Coleman and A. Pothen. “The Null Space Problem I. Complexity”. In: SIAM Journal on Algebraic
Discrete Methods 7.4 (Oct. 1, 1986), pp. 527–537. issn: 0196-5212. doi: 10.1137/0607059. url: http:
//epubs.siam.org/doi/abs/10.1137/0607059 (visited on 09/16/2016).

[13] T. Coleman and A. Pothen. “The Null Space Problem II. Algorithms”. In: SIAM Journal on Algebraic
Discrete Methods 8.4 (Oct. 1, 1987), pp. 544–563. issn: 0196-5212. doi: 10.1137/0608045. url: http:
//epubs.siam.org/doi/abs/10.1137/0608045 (visited on 09/16/2016).

[14] J. A. Cottrell et al. “Isogeometric Analysis of Structural Vibrations”. In: (2006). doi: 10.1016/J.CMA.
2005.09.027.

[15] L. Demkowicz et al. “Toward a universal h-p adaptive finite element strategy, part 1. Constrained
approximation and data structure”. In: Computer Methods in Applied Mechanics and Engineering
77.1 (Dec. 1, 1989), pp. 79–112. issn: 0045-7825. doi: 10.1016/0045-7825(89)90129-1. url: http:
//www.sciencedirect.com/science/article/pii/0045782589901291 (visited on 10/31/2018).

[16] Jiansong Deng et al. “Polynomial splines over hierarchical T-meshes”. In: Graphical Models 70.4 (July 1,
2008), pp. 76–86. issn: 1524-0703. doi: 10.1016/j.gmod.2008.03.001. url: http://www.sciencedirect.
com/science/article/pii/S1524070308000039 (visited on 10/29/2018).

[17] Tor Dokken, Tom Lyche, and Kjell Fredrik Pettersen. “Polynomial splines over locally refined box-
partitions”. In: Computer Aided Geometric Design 30.3 (Mar. 1, 2013), pp. 331–356. issn: 0167-8396. doi:
10.1016/j.cagd.2012.12.005. url: http://www.sciencedirect.com/science/article/pii/S0167839613000113
(visited on 10/29/2018).

[18] J. M. Escobar et al. “A new approach to solid modeling with trivariate T-splines based on mesh
optimization”. In: Computer Methods in Applied Mechanics and Engineering 200.45 (Oct. 15, 2011),
pp. 3210–3222. issn: 0045-7825. doi: 10.1016/j.cma.2011.07.004. url: http://www.sciencedirect.com/
science/article/pii/S0045782511002386 (visited on 08/10/2015).

[19] J. M. Escobar et al. “The meccano method for isogeometric solid modeling and applications”. In:
Engineering with Computers 30.3 (Dec. 1, 2012), pp. 331–343. issn: 0177-0667, 1435-5663. doi: 10.1007/
s00366-012-0300-z. url: http://link.springer.com/article/10.1007/s00366-012-0300-z (visited on
06/30/2016).

[20] Rida T. Farouki. “The Bernstein polynomial basis: A centennial retrospective”. In: Computer Aided
Geometric Design 29.6 (Aug. 2012), pp. 379–419. issn: 0167-8396. doi: 10.1016/j.cagd.2012.03.001. url:
http://www.sciencedirect.com/science/article/pii/S0167839612000192 (visited on 04/13/2015).

[21] Carlo Garoni et al. “Spectral analysis and spectral symbol of matrices in isogeometric Galerkin methods”.
In: Mathematics of Computation 86.305 (2017), pp. 1343–1373. issn: 0025-5718, 1088-6842. doi: 10.
1090/mcom/3143. url: https://www.ams.org/home/page/ (visited on 11/01/2018).

[22] Carlotta Giannelli, Bert Jüttler, and Hendrik Speleers. “THB-splines: The truncated basis for hierarchical
splines”. In: Computer Aided Geometric Design. Geometric Modeling and Processing 2012 29.7 (Oct. 1,
2012), pp. 485–498. issn: 0167-8396. doi: 10.1016/j.cagd.2012.03.025. url: http://www.sciencedirect.
com/science/article/pii/S0167839612000519 (visited on 07/17/2020).

[23] David Groisser and Jörg Peters. “Matched -constructions always yield -continuous isogeometric elements”.
In: Computer Aided Geometric Design 34 (Mar. 2015), pp. 67–72. issn: 0167-8396. doi: 10.1016/j.cagd.
2015.02.002. url: http://www.sciencedirect.com/science/article/pii/S0167839615000151 (visited on
05/20/2015).

[24] Klaus Hollig. Finite Element Methods with B-splines. Google-Books-ID: jSVeF8FgYD8C. SIAM, Jan. 1,
2003. 153 pp. isbn: 978-0-89871-753-2.

[25] X. Hu, D. Han, and M. Lai. “Bivariate Splines of Various Degrees for Numerical Solution of Partial
Differential Equations”. In: SIAM Journal on Scientific Computing 29.3 (Jan. 1, 2007), pp. 1338–1354.
issn: 1064-8275. doi: 10.1137/060667207. url: http://epubs.siam.org/doi/abs/10.1137/060667207
(visited on 08/21/2015).

[26] T. J. R. Hughes, J. A. Cottrell, and Y. Bazilevs. “Isogeometric analysis: CAD, finite elements, NURBS,
exact geometry and mesh refinement”. In: Computer Methods in Applied Mechanics and Engineering
194.39 (Oct. 1, 2005), pp. 4135–4195. issn: 0045-7825. doi: 10.1016/j.cma.2004.10.008. url: https:
//www.sciencedirect.com/science/article/pii/S0045782504005171 (visited on 06/14/2021).

91

https://doi.org/10.1137/0607059
http://epubs.siam.org/doi/abs/10.1137/0607059
http://epubs.siam.org/doi/abs/10.1137/0607059
https://doi.org/10.1137/0608045
http://epubs.siam.org/doi/abs/10.1137/0608045
http://epubs.siam.org/doi/abs/10.1137/0608045
https://doi.org/10.1016/J.CMA.2005.09.027
https://doi.org/10.1016/J.CMA.2005.09.027
https://doi.org/10.1016/0045-7825(89)90129-1
http://www.sciencedirect.com/science/article/pii/0045782589901291
http://www.sciencedirect.com/science/article/pii/0045782589901291
https://doi.org/10.1016/j.gmod.2008.03.001
http://www.sciencedirect.com/science/article/pii/S1524070308000039
http://www.sciencedirect.com/science/article/pii/S1524070308000039
https://doi.org/10.1016/j.cagd.2012.12.005
http://www.sciencedirect.com/science/article/pii/S0167839613000113
https://doi.org/10.1016/j.cma.2011.07.004
http://www.sciencedirect.com/science/article/pii/S0045782511002386
http://www.sciencedirect.com/science/article/pii/S0045782511002386
https://doi.org/10.1007/s00366-012-0300-z
https://doi.org/10.1007/s00366-012-0300-z
http://link.springer.com/article/10.1007/s00366-012-0300-z
https://doi.org/10.1016/j.cagd.2012.03.001
http://www.sciencedirect.com/science/article/pii/S0167839612000192
https://doi.org/10.1090/mcom/3143
https://doi.org/10.1090/mcom/3143
https://www.ams.org/home/page/
https://doi.org/10.1016/j.cagd.2012.03.025
http://www.sciencedirect.com/science/article/pii/S0167839612000519
http://www.sciencedirect.com/science/article/pii/S0167839612000519
https://doi.org/10.1016/j.cagd.2015.02.002
https://doi.org/10.1016/j.cagd.2015.02.002
http://www.sciencedirect.com/science/article/pii/S0167839615000151
https://doi.org/10.1137/060667207
http://epubs.siam.org/doi/abs/10.1137/060667207
https://doi.org/10.1016/j.cma.2004.10.008
https://www.sciencedirect.com/science/article/pii/S0045782504005171
https://www.sciencedirect.com/science/article/pii/S0045782504005171

[27] Thomas J. R. Hughes. The Finite Element Method: Linear Static and Dynamic Finite Element Analysis.
Courier Corporation, May 23, 2012. 706 pp. isbn: 978-0-486-13502-1.

[28] Noah Jaxon and Xiaoping Qian. “Isogeometric analysis on triangulations”. In: Computer-Aided Design.
2013 SIAM Conference on Geometric and Physical Modeling 46 (Jan. 2014), pp. 45–57. issn: 0010-
4485. doi: 10.1016/j.cad.2013.08.017. url: http://www.sciencedirect.com/science/article/pii/
S0010448513001577 (visited on 08/13/2015).

[29] Bert Jüttler. “The dual basis functions for the Bernstein polynomials”. en. In: Advances in Computational
Mathematics 8.4 (June 1998), pp. 345–352. issn: 1572-9044. doi: 10.1023/A:1018912801267. url: https:
//doi.org/10.1023/A:1018912801267 (visited on 02/23/2022).

[30] Mario Kapl, Giancarlo Sangalli, and Thomas Takacs. “Construction of analysis-suitable G1 planar multi-
patch parameterizations”. In: Computer-Aided Design 97 (Apr. 1, 2018), pp. 41–55. issn: 0010-4485. doi:
10.1016/j.cad.2017.12.002. url: http://www.sciencedirect.com/science/article/pii/S0010448517302439
(visited on 10/30/2018).

[31] Ming-Jun Lai and Larry L. Schumaker. Spline Functions on Triangulations. Google-Books-ID: 6hvqGg-
bBmEoC. Cambridge University Press, Apr. 19, 2007. 609 pp. isbn: 978-0-521-87592-9.

[32] X. Li and M. A. Scott. “Analysis-suitable T-splines: characterization, refineability, and approximation”.
In: Mathematical Models and Methods in Applied Science 24.6 (2014), pp. 1141–1164.

[33] Xin Li and Falai Chen. “On the instability in the dimension of splines spaces over T-meshes”. In:
Computer Aided Geometric Design 28.7 (Oct. 1, 2011), pp. 420–426. issn: 0167-8396. doi: 10.1016/j.
cagd.2011.08.001. url: http://www.sciencedirect.com/science/article/pii/S0167839611000896 (visited
on 07/11/2017).

[34] Xin Li, Jiansong Deng, and Falai Chen. “Polynomial splines over general T-meshes”. In: The Visual
Computer 26.4 (Apr. 2010), pp. 277–286. issn: 0178-2789, 1432-2315. doi: 10.1007/s00371-009-0410-9.
url: https://link.springer.com/article/10.1007/s00371-009-0410-9 (visited on 12/14/2017).

[35] Xin Li et al. “On linear independence of T-spline blending functions”. In: Computer Aided Geometric
Design. Geometric Constraints and Reasoning 29.1 (Jan. 2012), pp. 63–76. issn: 0167-8396. doi:
10.1016/j.cagd.2011.08.005. url: http://www.sciencedirect.com/science/article/pii/S0167839611000938
(visited on 01/28/2016).

[36] Lei Liu. “Volumetric T-spline Construction for Isogeometric Analysis – Feature Preservation, Weighted
Basis and Arbitrary Degree”. en. thesis. Carnegie Mellon University, Sept. 2015. doi: 10.1184/R1/
6724256.v1. url: https://figshare.com/articles/thesis/Volumetric_T-spline_Construction_for_
Isogeometric_Analysis_Feature_Preservation_Weighted_Basis_and_Arbitrary_Degree/6724256/1
(visited on 01/04/2022).

[37] Lei Liu et al. “Volumetric T-spline construction using Boolean operations”. In: Engineering with
Computers 30.4 (Nov. 19, 2013), pp. 425–439. issn: 0177-0667, 1435-5663. doi: 10.1007/s00366-013-
0346-6. url: http://link.springer.com/article/10.1007/s00366-013-0346-6 (visited on 08/14/2015).

[38] Tom Lyche and Georg Muntingh. “Simplex Spline Bases on the Powell-Sabin 12-Split: Part I”. In:
Oberwolfach Reports 12.2 (2015), pp. 1139–1200. issn: 1660-8933. doi: 10.4171/OWR/2015/21. arXiv:
1505.01798. url: http://arxiv.org/abs/1505.01798 (visited on 10/30/2018).

[39] Tobias Martin, Elaine Cohen, and Mike Kirby. “Volumetric Parameterization and Trivariate B-spline
Fitting Using Harmonic Functions”. In: Proceedings of the 2008 ACM Symposium on Solid and Physical
Modeling. SPM ’08. New York, NY, USA: ACM, 2008, pp. 269–280. isbn: 978-1-60558-106-4. doi:
10.1145/1364901.1364938. url: http://doi.acm.org/10.1145/1364901.1364938 (visited on 08/10/2015).

[40] Marie-Laurence Mazure. “On a general new class of quasi Chebyshevian splines”. In: Numerical
Algorithms 58.3 (Nov. 1, 2011), pp. 399–438. issn: 1017-1398, 1572-9265. doi: 10.1007/s11075-011-9461-
x. url: https://link.springer.com/article/10.1007/s11075-011-9461-x (visited on 05/03/2018).

[41] S. Morganti et al. “Patient-specific isogeometric structural analysis of aortic valve closure”. In: Computer
Methods in Applied Mechanics and Engineering. Isogeometric Analysis Special Issue 284 (Feb. 1, 2015),
pp. 508–520. issn: 0045-7825. doi: 10.1016/j.cma.2014.10.010. url: http://www.sciencedirect.com/
science/article/pii/S0045782514003806 (visited on 02/04/2019).

92

https://doi.org/10.1016/j.cad.2013.08.017
http://www.sciencedirect.com/science/article/pii/S0010448513001577
http://www.sciencedirect.com/science/article/pii/S0010448513001577
https://doi.org/10.1023/A:1018912801267
https://doi.org/10.1023/A:1018912801267
https://doi.org/10.1023/A:1018912801267
https://doi.org/10.1016/j.cad.2017.12.002
http://www.sciencedirect.com/science/article/pii/S0010448517302439
https://doi.org/10.1016/j.cagd.2011.08.001
https://doi.org/10.1016/j.cagd.2011.08.001
http://www.sciencedirect.com/science/article/pii/S0167839611000896
https://doi.org/10.1007/s00371-009-0410-9
https://link.springer.com/article/10.1007/s00371-009-0410-9
https://doi.org/10.1016/j.cagd.2011.08.005
http://www.sciencedirect.com/science/article/pii/S0167839611000938
https://doi.org/10.1184/R1/6724256.v1
https://doi.org/10.1184/R1/6724256.v1
https://figshare.com/articles/thesis/Volumetric_T-spline_Construction_for_Isogeometric_Analysis_Feature_Preservation_Weighted_Basis_and_Arbitrary_Degree/6724256/1
https://figshare.com/articles/thesis/Volumetric_T-spline_Construction_for_Isogeometric_Analysis_Feature_Preservation_Weighted_Basis_and_Arbitrary_Degree/6724256/1
https://doi.org/10.1007/s00366-013-0346-6
https://doi.org/10.1007/s00366-013-0346-6
http://link.springer.com/article/10.1007/s00366-013-0346-6
https://doi.org/10.4171/OWR/2015/21
https://arxiv.org/abs/1505.01798
http://arxiv.org/abs/1505.01798
https://doi.org/10.1145/1364901.1364938
http://doi.acm.org/10.1145/1364901.1364938
https://doi.org/10.1007/s11075-011-9461-x
https://doi.org/10.1007/s11075-011-9461-x
https://link.springer.com/article/10.1007/s11075-011-9461-x
https://doi.org/10.1016/j.cma.2014.10.010
http://www.sciencedirect.com/science/article/pii/S0045782514003806
http://www.sciencedirect.com/science/article/pii/S0045782514003806

[42] Philipp Morgenstern. “Globally structured 3D Analysis-suitable T-splines: definition, linear independence
and m-graded local refinement”. In: SIAM Journal on Numerical Analysis 54.4 (Jan. 2016). arXiv:
1505.05392, pp. 2163–2186. issn: 0036-1429, 1095-7170. doi: 10.1137/15M102229X. url: http://arxiv.
org/abs/1505.05392 (visited on 01/04/2022).

[43] Marian Neamtu. “Delaunay configurations and multivariate splines: A generalization of a result of B. N.
Delaunay”. In: Transactions of the American Mathematical Society 359.7 (2007), pp. 2993–3004. issn:
0002-9947, 1088-6850. doi: 10.1090/S0002-9947-07-03976-1. url: http://www.ams.org/tran/2007-359-
07/S0002-9947-07-03976-1/ (visited on 09/10/2015).

[44] Thien Nguyen and Jörg Peters. “Refinable C1 spline elements for irregular quad layout”. In: Computer
Aided Geometric Design. Geometric Modeling and Processing 2016 43 (Mar. 2016), pp. 123–130. issn:
0167-8396. doi: 10.1016/j.cagd.2016.02.009. url: http://www.sciencedirect.com/science/article/pii/
S0167839616300103 (visited on 12/22/2016).

[45] Francesca Pelosi et al. “Splines over regular triangulations in numerical simulation”. In: Computer-
Aided Design. Isogeometric Design and Analysis 82 (Jan. 2017), pp. 100–111. issn: 0010-4485. doi:
10.1016/j.cad.2016.08.002. url: http://www.sciencedirect.com/science/article/pii/S0010448516300902
(visited on 01/19/2017).

[46] J. Peters and U. Reif. Subdivision Surfaces. Geometry and Computing. Springer Berlin Heidelberg, 2010.
isbn: 978-3-642-09527-6. url: https://books.google.com/books?id=ndaecQAACAAJ.

[47] Jörg Peters. “Splines and unsorted knot sequences”. In: Computer Aided Geometric Design 30.7 (Oct. 1,
2013), pp. 733–741. issn: 0167-8396. doi: 10.1016/j.cagd.2013.06.001. url: http://www.sciencedirect.
com/science/article/pii/S016783961300054X (visited on 11/05/2018).

[48] Hartmut Prautzsch, Wolfgang Boehm, and Marco Paluszny. Bezier and B-Spline Techniques. Secaucus,
NJ, USA: Springer-Verlag New York, Inc., 2002. isbn: 978-3-540-43761-1.

[49] Ulrich Reif. “A Refineable Space of Smooth Spline Surfaces of Arbitrary Topological Genus”. In: Journal
of Approximation Theory 90.2 (Aug. 1997), pp. 174–199. issn: 0021-9045. doi: 10.1006/jath.1996.3079.
url: http://www.sciencedirect.com/science/article/pii/S0021904596930798 (visited on 05/11/2016).

[50] Larry Schumaker. Spline Functions: Basic Theory. Cambridge University Press, Aug. 16, 2007. 598 pp.
isbn: 978-0-521-70512-7.

[51] Larry L. Schumaker and Lujun Wang. “Spline spaces on TR-meshes with hanging vertices”. In: Nu-
merische Mathematik 118.3 (July 1, 2011), pp. 531–548. issn: 0945-3245. doi: 10.1007/s00211-010-0353-0.
url: https://doi.org/10.1007/s00211-010-0353-0 (visited on 10/22/2018).

[52] M. A. Scott, D. C. Thomas, and E. J. Evans. “Isogeometric spline forests”. In: Computer Methods in
Applied Mechanics and Engineering 269 (Feb. 1, 2014), pp. 222–264. issn: 0045-7825. doi: 10.1016/j.
cma.2013.10.024. url: http://www.sciencedirect.com/science/article/pii/S0045782513002764 (visited on
04/08/2015).

[53] M. A. Scott et al. “Local refinement of analysis-suitable T-splines”. In: Computer Methods in Applied
Mechanics and Engineering 213-216 (Mar. 1, 2012), pp. 206–222. issn: 0045-7825. doi: 10.1016/j.cma.
2011.11.022. url: http://www.sciencedirect.com/science/article/pii/S0045782511003689 (visited on
02/04/2019).

[54] Michael A. Scott et al. “Isogeometric finite element data structures based on Bézier extraction of
T-splines”. In: International Journal for Numerical Methods in Engineering 88.2 (Oct. 14, 2011),
pp. 126–156. issn: 1097-0207. doi: 10.1002/nme.3167. url: http://onlinelibrary.wiley.com/doi/10.1002/
nme.3167/abstract.

[55] Thomas Sederberg et al. “T-splines and T-NURCCs”. In: Faculty Publications (July 27, 2003). url:
https://scholarsarchive.byu.edu/facpub/1057.

[56] Thomas W. Sederberg, Jianmin Zheng, and Xiaowen Song. “Knot intervals and multi-degree splines”. In:
Computer Aided Geometric Design 20.7 (Oct. 1, 2003), pp. 455–468. issn: 0167-8396. doi: 10.1016/S0167-
8396(03)00096-7. url: http://www.sciencedirect.com/science/article/pii/S0167839603000967 (visited
on 05/16/2018).

93

https://doi.org/10.1137/15M102229X
http://arxiv.org/abs/1505.05392
http://arxiv.org/abs/1505.05392
https://doi.org/10.1090/S0002-9947-07-03976-1
http://www.ams.org/tran/2007-359-07/S0002-9947-07-03976-1/
http://www.ams.org/tran/2007-359-07/S0002-9947-07-03976-1/
https://doi.org/10.1016/j.cagd.2016.02.009
http://www.sciencedirect.com/science/article/pii/S0167839616300103
http://www.sciencedirect.com/science/article/pii/S0167839616300103
https://doi.org/10.1016/j.cad.2016.08.002
http://www.sciencedirect.com/science/article/pii/S0010448516300902
https://books.google.com/books?id=ndaecQAACAAJ
https://doi.org/10.1016/j.cagd.2013.06.001
http://www.sciencedirect.com/science/article/pii/S016783961300054X
http://www.sciencedirect.com/science/article/pii/S016783961300054X
https://doi.org/10.1006/jath.1996.3079
http://www.sciencedirect.com/science/article/pii/S0021904596930798
https://doi.org/10.1007/s00211-010-0353-0
https://doi.org/10.1007/s00211-010-0353-0
https://doi.org/10.1016/j.cma.2013.10.024
https://doi.org/10.1016/j.cma.2013.10.024
http://www.sciencedirect.com/science/article/pii/S0045782513002764
https://doi.org/10.1016/j.cma.2011.11.022
https://doi.org/10.1016/j.cma.2011.11.022
http://www.sciencedirect.com/science/article/pii/S0045782511003689
https://doi.org/10.1002/nme.3167
http://onlinelibrary.wiley.com/doi/10.1002/nme.3167/abstract
http://onlinelibrary.wiley.com/doi/10.1002/nme.3167/abstract
https://scholarsarchive.byu.edu/facpub/1057
https://doi.org/10.1016/S0167-8396(03)00096-7
https://doi.org/10.1016/S0167-8396(03)00096-7
http://www.sciencedirect.com/science/article/pii/S0167839603000967

[57] Wanqiang Shen and Guozhao Wang. “A basis of multi-degree splines”. In: Computer Aided Geometric
Design 27.1 (Jan. 1, 2010), pp. 23–35. issn: 0167-8396. doi: 10 . 1016/ j . cagd . 2009 . 08 . 005. url:
http://www.sciencedirect.com/science/article/pii/S0167839609000946 (visited on 05/16/2018).

[58] Hendrik Speleers. “Algorithm 999: Computation of Multi-Degree B-Splines”. In: ACM Transactions on
Mathematical Software 45.4 (Dec. 9, 2019), 43:1–43:15. issn: 0098-3500. doi: 10.1145/3321514. url:
https://doi.org/10.1145/3321514 (visited on 07/09/2021).

[59] Hendrik Speleers. “Construction of Normalized B-Splines for a Family of Smooth Spline Spaces Over
Powell–Sabin Triangulations”. In: Constructive Approximation 37.1 (Jan. 24, 2012), pp. 41–72. issn: 0176-
4276, 1432-0940. doi: 10.1007/s00365-011-9151-x. url: http://link.springer.com/article/10.1007/s00365-
011-9151-x (visited on 06/29/2015).

[60] Hendrik Speleers, Carla Manni, and Francesca Pelosi. “From NURBS to NURPS geometries”. In:
Computer Methods in Applied Mechanics and Engineering 255 (Mar. 1, 2013), pp. 238–254. issn: 0045-
7825. doi: 10.1016/j.cma.2012.11.012. url: http://www.sciencedirect.com/science/article/pii/
S0045782512003507 (visited on 10/14/2016).

[61] Ivar Haugalokken Stangeby. “Simplex Splines on the Powell-Sabin 12-Split”. In: (2018). url: https:
//www.duo.uio.no/handle/10852/64070 (visited on 10/30/2018).

[62] Gilbert Strang. “Piecewise polynomials and the finite element method”. In: Bulletin of the American
Mathematical Society 79.6 (1973), pp. 1128–1137. issn: 0002-9904, 1936-881X. doi: 10.1090/S0002-9904-
1973-13351-8. url: https://www.ams.org/home/page/ (visited on 10/24/2018).

[63] Deepesh Toshniwal, Hendrik Speleers, and Thomas J. R. Hughes. “Smooth cubic spline spaces on
unstructured quadrilateral meshes with particular emphasis on extraordinary points: Geometric design
and isogeometric analysis considerations”. In: Computer Methods in Applied Mechanics and Engineering.
Advances in Computational Mechanics and Scientific Computation—the Cutting Edge 327 (Dec. 1,
2017), pp. 411–458. issn: 0045-7825. doi: 10.1016/j.cma.2017.06.008. url: http://www.sciencedirect.
com/science/article/pii/S0045782517305303 (visited on 10/31/2018).

[64] Deepesh Toshniwal et al. “Multi-degree B-splines: Algorithmic computation and properties”. In: Com-
puter Aided Geometric Design 76 (Jan. 1, 2020), p. 101792. issn: 0167-8396. doi: 10.1016/j.cagd.
2019.101792. url: https://www.sciencedirect.com/science/article/pii/S0167839619301013 (visited on
07/09/2021).

[65] Deepesh Toshniwal et al. “Multi-degree smooth polar splines: A framework for geometric modeling and
isogeometric analysis”. In: Computer Methods in Applied Mechanics and Engineering. Special Issue on
Isogeometric Analysis: Progress and Challenges 316 (Apr. 1, 2017), pp. 1005–1061. issn: 0045-7825. doi:
10.1016/j.cma.2016.11.009. url: http://www.sciencedirect.com/science/article/pii/S004578251631533X
(visited on 10/31/2018).

[66] Wenyan Wang et al. “Trivariate solid T-spline construction from boundary triangulations with arbitrary
genus topology”. In: Computer-Aided Design. Solid and Physical Modeling 2012 45.2 (Feb. 2013),
pp. 351–360. issn: 0010-4485. doi: 10.1016/j.cad.2012.10.018. url: http://www.sciencedirect.com/
science/article/pii/S0010448512002230 (visited on 08/10/2015).

[67] Xilu Wang and Xiaoping Qian. “An optimization approach for constructing trivariate B-spline solids”. In:
Computer-Aided Design. 2013 SIAM Conference on Geometric and Physical Modeling 46 (Supplement
C Jan. 1, 2014), pp. 179–191. issn: 0010-4485. doi: 10.1016/j.cad.2013.08.030. url: http://www.
sciencedirect.com/science/article/pii/S001044851300170X.

[68] Songtao Xia and Xiaoping Qian. “Isogeometric analysis with Bézier tetrahedra”. In: (2017). doi:
10.1016/J.CMA.2016.09.045.

[69] Songtao Xia, Xilu Wang, and Xiaoping Qian. “Continuity and convergence in rational triangular
Bézier spline based isogeometric analysis”. In: Computer Methods in Applied Mechanics and Engineering
297 (Dec. 1, 2015), pp. 292–324. issn: 0045-7825. doi: 10 . 1016/ j . cma . 2015 . 09 . 001. url: http :
//www.sciencedirect.com/science/article/pii/S0045782515002777 (visited on 01/27/2016).

94

https://doi.org/10.1016/j.cagd.2009.08.005
http://www.sciencedirect.com/science/article/pii/S0167839609000946
https://doi.org/10.1145/3321514
https://doi.org/10.1145/3321514
https://doi.org/10.1007/s00365-011-9151-x
http://link.springer.com/article/10.1007/s00365-011-9151-x
http://link.springer.com/article/10.1007/s00365-011-9151-x
https://doi.org/10.1016/j.cma.2012.11.012
http://www.sciencedirect.com/science/article/pii/S0045782512003507
http://www.sciencedirect.com/science/article/pii/S0045782512003507
https://www.duo.uio.no/handle/10852/64070
https://www.duo.uio.no/handle/10852/64070
https://doi.org/10.1090/S0002-9904-1973-13351-8
https://doi.org/10.1090/S0002-9904-1973-13351-8
https://www.ams.org/home/page/
https://doi.org/10.1016/j.cma.2017.06.008
http://www.sciencedirect.com/science/article/pii/S0045782517305303
http://www.sciencedirect.com/science/article/pii/S0045782517305303
https://doi.org/10.1016/j.cagd.2019.101792
https://doi.org/10.1016/j.cagd.2019.101792
https://www.sciencedirect.com/science/article/pii/S0167839619301013
https://doi.org/10.1016/j.cma.2016.11.009
http://www.sciencedirect.com/science/article/pii/S004578251631533X
https://doi.org/10.1016/j.cad.2012.10.018
http://www.sciencedirect.com/science/article/pii/S0010448512002230
http://www.sciencedirect.com/science/article/pii/S0010448512002230
https://doi.org/10.1016/j.cad.2013.08.030
http://www.sciencedirect.com/science/article/pii/S001044851300170X
http://www.sciencedirect.com/science/article/pii/S001044851300170X
https://doi.org/10.1016/J.CMA.2016.09.045
https://doi.org/10.1016/j.cma.2015.09.001
http://www.sciencedirect.com/science/article/pii/S0045782515002777
http://www.sciencedirect.com/science/article/pii/S0045782515002777

[70] Gang Xu et al. “Analysis-suitable volume parameterization of multi-block computational domain in
isogeometric applications”. In: Computer-Aided Design. Solid and Physical Modeling 2012 45.2 (Feb.
2013), pp. 395–404. issn: 0010-4485. doi: 10.1016/j.cad.2012.10.022. url: http://www.sciencedirect.
com/science/article/pii/S0010448512002278 (visited on 06/30/2016).

[71] Gang Xu et al. “Parameterization of computational domain in isogeometric analysis: Methods and
comparison”. In: Computer Methods in Applied Mechanics and Engineering 200.23 (June 1, 2011),
pp. 2021–2031. issn: 0045-7825. doi: 10.1016/j.cma.2011.03.005. url: http://www.sciencedirect.com/
science/article/pii/S0045782511001101.

[72] Yongjie Zhang, Wenyan Wang, and Thomas J. R. Hughes. “Solid T-spline construction from boundary
representations for genus-zero geometry”. In: Computer Methods in Applied Mechanics and Engineering.
Higher Order Finite Element and Isogeometric Methods 249 (Supplement C Dec. 1, 2012), pp. 185–197.
issn: 0045-7825. doi: 10.1016/j.cma.2012.01.014. url: http://www.sciencedirect.com/science/article/
pii/S0045782512000254.

95

https://doi.org/10.1016/j.cad.2012.10.022
http://www.sciencedirect.com/science/article/pii/S0010448512002278
http://www.sciencedirect.com/science/article/pii/S0010448512002278
https://doi.org/10.1016/j.cma.2011.03.005
http://www.sciencedirect.com/science/article/pii/S0045782511001101
http://www.sciencedirect.com/science/article/pii/S0045782511001101
https://doi.org/10.1016/j.cma.2012.01.014
http://www.sciencedirect.com/science/article/pii/S0045782512000254
http://www.sciencedirect.com/science/article/pii/S0045782512000254

	Introduction
	Previous work
	Current work and key contributions
	Organization of paper

	The Bernstein polynomials
	Ordering of derivatives
	Degree elevation
	Multivariate Bernstein polynomials
	Box
	Simplicial
	Tensor-product hybrid

	Bernstein-like bases

	The Bézier mesh
	Topology
	Adjacencies
	k-cell types

	Cell domains and parameterization
	Cell space and degree
	Interface continuity
	Supersmooth interfaces

	Bernstein representations
	Indexing
	Bernstein form
	The trace mapping matrix

	Continuity constraints
	Constraint sets
	Constraint matrices
	Constraint construction

	Splines and the nullspace problem
	Basis vectors
	Basis functions
	Spline form
	Extracted form

	Bernstein basis metrics and index measurements
	Greville points
	Submesh domains
	Indexed submesh domains

	Equivalence relations and classes
	Alignment
	Alignment in two dimensions
	Alignment in arbitrary dimensions

	Basis vectors for k-cell nullspaces
	Basis vectors in one dimension
	Interface basis vectors in two dimensions
	k-cell basis vector preliminaries
	Spokes and interface-element pairs
	Inclusion distances
	Alignment sets

	Overview of k-cell basis vector construction
	Vertex basis vectors in two dimensions
	Composite vertex basis vectors
	Simple vertex basis vectors
	The full set of vertex basis vectors

	Subordinate basis vectors
	Basis vector boundaries
	Basis vector boundaries in one dimension
	Basis vector boundaries in two dimensions
	Basis vector boundaries in arbitrary dimensions

	The U-spline mesh
	Ribbons
	Maximum coupling length
	Continuity transitions
	Degree transitions

	Admissible layouts
	Classification

	The U-spline basis
	The core graph
	Cores
	Expansion edges
	Algorithm

	The rank one null space problem
	Normalization

	The U-spline space
	Completeness and the neighborhood of interaction
	Mathematical properties
	Numerical verification
	Overview of verification procedure

	Notable U-spline examples
	Supersmooth interfaces
	Degree transitions
	Extraordinary vertices
	Triangles
	Unstructured volumetric U-splines

	Conclusion
	Acknowledgements
	A gentle introduction to U-splines
	Building intuition: Constraints
	Building intuition: Splines
	Building intuition: Basis vectors
	Building intuition: The U-spline mesh
	Building intuition: The U-spline basis

	Interface continuity constraints in two dimensions
	Quadrilateral-quadrilateral interface
	Quadrilateral-triangle interface
	Triangle-triangle interface

	Basis vectors in arbitrary dimensions
	Composite k-cell basis vectors
	Simple k-cell basis vectors
	The full set of k-cell basis vectors

	Ribbon processing
	U-spline test cases with Bézier extraction coefficients
	U-spline extraction coefficients near a supersmooth interface
	U-spline extraction coefficients with non-rectangular support
	U-spline extraction coefficients on mesh equivalent to analysis-suitable T-spline with non-crossing edge extensions
	U-spline extraction coefficients near an extraordinary vertex
	U-spline extraction coefficients near a triangle

