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Abstract

U-splines are a novel approach to the construction of a spline basis for representing smooth objects in Computer-
Aided Design (CAD) and Computer-Aided Engineering (CAE). A spline is a piecewise-defined function that
satisfies continuity constraints between adjacent elements in a mesh. U-splines di↵er from existing spline con-
structions, such as Non-Uniform Rational B- splines (NURBS), subdivision surfaces, T-splines, and hierarchical
B-splines, in that they can accommodate local geometrically exact adaptivity in h (element size), p (polynomial
degree), and k (smoothness) simultaneously over more varied mesh topology. U-splines have no restrictions on
the placement of T-junctions in the mesh. Mixed element meshes (e.g., triangle and quadrilateral elements in
the same surface mesh) are also supported. We conjecture that the U- spline basis is positive, forms a partition
of unity, is linearly independent, and provides optimal approximation when used in analysis.

Keywords: unstructured spline, unstructured mesh, computer-aided geometric design (CAGD), isogeometric
analysis (IGA), computer-aided engineering (CAE), finite element analysis (FEA)

1. Introduction

1.1. Motivation

Splines are used extensively in computer-aided design (CAD) for the representation of shape. The nonuni-
form, rational B-spline (NURBS) underlies virtually all CAD systems. The NURBS construction is inherently
limited as a single NURBS object can only represent deformations of a square. To overcome this limitation,
the use of boundary representations (B-reps) based on trimmed B-splines has become standard. While the
shortcomings of B-reps have long been recognized by CAD practitioners, the overall utility of the approach for
design has been proven over the past decades.

Computer-based simulation is conceptually complementary to the CAD process as it can provide feedback
regarding the expected behavior of a given part before costly fabrication is undertaken. The predominant
simulation technique in current use is finite element analysis (FEA). However, the requirements of this analysis
are dramatically di↵erent from the requirements of the design. Consequently, simulation of a design is typically
preceded by a process known as meshing in which an approximation of the original CAD design is constructed
in order to satisfy the requirements of the analysis pipeline. Inconsistencies in the original model must resolved.
Since inconsistencies often include small gaps between adjacent faces in the model, the final mesh approximation
that resolves these inconsistencies is referred to as “watertight”. The generation of a clean, watertight mesh from
a B-rep is notoriously di�cult to automate. The analysis mesh is typically constructed using linear interpolation
functions and therefore can only approximate the curved, smooth features of the original shape. This leads to
the common practice of removing small features to avoid excessively dense meshes. This is known as defeaturing.
The approximate nature of the analysis mesh and the intentional removal of features both a↵ect the accuracy
of the resulting analysis. These challenges are a significant barrier between CAD and analysis that restricts the
utility of analysis in the design iteration process.

Although the potential power of splines has long been recognized by analysts [1], most splines other than
simple C0 splines were viewed as too expensive or the construction was too complex for use in general-purpose
FEA. E↵orts were made to improve the geometric definition in analysis through the use of subdivision surfaces
[2] and NURBS in finite element analysis [3] among others but it was not until the introduction of the concept of
isogeometric analysis (IGA) [4] that a large-scale e↵ort to more closely integrate design and analysis commenced.
The past decade has seen an explosion in research on the unification of geometry and analysis under the banner
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of IGA. The potential benefits of this integration have become clear [5, 6, 7] but analysis of complex geometries
remains a significant barrier to broader adoption. Promising work on conducting analysis directly on trimmed
objects [8] has been carried out but the quality of the analysis can depend strongly on the choice of auxiliary
parameters and on the relationship between the underlying parameteric basis and the trimming curve. Analysis
e↵orts based on subdivision algorithms [9], T-splines [10], and other constructions were initiated early on in the
literature but each failed to completely realize the full vision of IGA.

A true isogeometric representation for industrial-scale problems requires a spline technology that is capable
of meeting the needs of both design and analysis. This representation must be defined over meshes of arbitrary
topology, support the local modification of element size and interelement continuity, and provide a locally
supported, positive basis that forms a partition of unity and is linearly independent.

1.2. Previous work

The work presented here has a shared heritage in both CAGD and FEA. The reader is referred to [11, 12] for a
history of CAGD and to [13, 14, 15] for information on the history of FEA. Despite common goals of representing
geometry for the purpose of computation, as stated previously, CAGD and CAE developed distinctly di↵erent
approaches to the representation of shape. Rather than giving a full history, we attempt to provide a brief
overview of publications directly related to the current work.

The need for unstructured surface representations in graphics led to the development of both subdivision
surfaces [16] and T-splines [17] for use in computer graphics. A significant benefit of the T-spline construction is
its compatibility with NURBS representations. Additional developments to follow on the advances of subdivision
surfaces and T-splines include PHT-splines [18] and polynomials splines over T-meshes [19]. In these works, the
continuity of the splines is restricted to be less than half of the polynomial degrees on adjacent elements. The
importance of handling singular or extraordinary points smoothly has long been recognized and many approaches
have been proposed but the work of Reif [20] and derived e↵orts [21, 22] are particularly relevant.

The need for smooth unstructured surfaces was recognized in the analysis community [23]. Despite these
early e↵orts, the majority of finite element research was carried out on C0 constructions and so finite element
analysis came to be associate primarily with C0 basis functions. More recently, subdivision surfaces were applied
to shells by Cirak et al. [2]. Shortly after the original introduction of the IGA vision [4], work commenced on
isogeometric analysis based on T-splines [10]. This was motivated by both the unstructured nature of T-splines
and the need for adaptive local refinement. The need for guarantees on analysis properties of the basis led
to the introduction of analysis-suitable T-splines [24]. Other e↵orts to produce refinable splines suitable for
use in analysis followed. This included locally refined (LR) B-splines [25] hierarchical B-splines and truncate
hierarchical B-splines [26, 27]. Constructions based on geometric rather than parametric continuity include the
work of Groisser and Peters [28] and Kapl et al. [29].

There has also been significant work on new spline constructions over unstructured meshes within the nu-
merical analysis community although most of these were not adopted in the context of IGA. Classic approaches
commonly employed to produce continuity greater than C0 include Arqyris elements [23], Clough-Tocher el-
ements [30], and Powell-Sabin splines [31, 32] among others. Significant work has been carried out on the
dimension of spline spaces for both triangle [33, 34] and T-meshes [35, 19]. Schumaker and Wang considered
meshes consisting of both squares and triangles with potentially hanging vertices although they considered only
splines of continuity C0. Schumaker and Wang [37] proved the approxmation power of splines over T-meshes for
splines of reduced continuity greater than C0. Several types of simplex splines have been introduced to facilitate
the construction of splines in unstructured settings. Neamtu [38] gives a very elegant construction that relies
only on the placement of points, not on any mesh connectivity. As such, it cannot be applied to predefined
meshes. Several adaptations of simplex splines to Powell-Sabin and other splits have been proposed to allow their
use on unstructured meshes [39, 40, 41, 42]. Additional methods combine the solution of continuity constraints
together with the solution of the governing PDEs [43, 44, 45]. Splines based on both triangles [46, 47, 48] and
tetrahedra [49] have been employed in isogeometric analysis.

Mixed degree or multi-degree splines have not seen extensive use in isogeometric analysis although basic
constructions are used in hp-adaptive methods [50]. In CAGD, univariate mixed degree or multi-degree splines
were proposed by Sederberg et al. [51] with a basis given by Shen and Wang [52]. An alternate method for
constructing a basis was given by Toshniwal et al. [53]. Multivariate multidegree splines with higher continuity
have been constructed on triangulations without a basis for the purpose of numerical analysis [44].

1.3. Current work

Each of the prior technologies has provided important advances and served to demonstrate the power and
utility of the isogeometric paradigm; however each has also been unable to achieve the flexibility required for
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a full integration of design and analysis. Each has di↵erent limitations in the level of continuity enabled, the
placement of local refinement features, the polynomial degree supported, or the quality of the basis. To this
end we present U-splines, a technology for the construction of spline basis functions over unstructured meshes.
An innovation underlying U-splines is a method for solving a series of highly localized nullspace problems of
size bounded by the local characteristics of the basis chosen for each element, the local mesh topology, and
the associated smoothness constraints. Each local nullspace problem is solved to determine exactly one spline
basis function. The U-spline algorithm guarantees that each U-spline basis function is positive and that the
resulting basis satisfies a partition of unity. The algorithm is expressed entirely in terms of integers and requires
no floating point operations until the indices of the nonzero coe�cients of a U-spline basis function have been
determined. A novel indexing scheme is used to uniquely identify each U-spline basis function in the mesh and
to construct the associated control mesh. The only requirement for the initialization of the algorithm is that
a Bernstein-like basis be defined over each element in the mesh. A mixture of standard polynomial Bernstein
bases over cuboidal and simplicial (triangular) elements can be used in addition to more exotic Bernstein-like
bases based on exponential, trigonometric, and other special functions.

The use of U-splines in commercial CAD and CAE implementations can improve the quality and flexibility
of shape representation, the accuracy, robustness, and e�ciency of simulation, and create fully integrated iso-
geometric analysis (IGA) workflows that may significantly reduce the significant time spent in translating data
between CAD and CAE representations in aerospace, automotive, defense, and other industries. The unique
U-spline basis construction process generates a minimal number of control points or degrees of freedom required
for a given application. This may also o↵er unique benefits for emerging applications like topology optimization,
generative design, and additive manufacturing.

We note that the name U-spline was originally used to refer to the definition of splines over unordered
knot sequences [54]. Because the need for unstructured splines is significant and the application of splines over
unordered knot sequences has not yet achieved widespread use, we instead use the U-spline designation for our
splines over unstructured meshes.

2. Bernstein representations

2.1. Polynomial basis

The univariate Bernstein basis is defined as

Bp
i (s) =

✓
p

i

◆
si(1� s)p�i, (1)

where p is the polynomial degree, s 2 [0, 1], and the binomial coe�cient is
�p
i

�
= p!

(i)!(p�i)! , 0  i  p. The
Bernstein basis possesses many remarkable properties but the primary property of interest for this work is the
ordering of the derivatives of the basis functions. A function f : R ! R vanishes n times at a real value a if
f(a) = 0 and f (i)(a) = 0 for all i 2 [0, n]. The ith Bernstein basis function Bp

i on the interval [0, 1] vanishes i
times at 0 and p� i times at 1. This property can be observed in Table 1 where the evaluations of the Bernstein
basis and its derivatives are shown at the endpoints of the interval [0, 1].

Two constructions for the multivariate setting are employed. One construction is the tensor-product of
multiple univariate Bernstein bases:

Bp
i (s) =

dY

j=0

B
pj

ij
(sj). (2)

This is defined over box-like elements. In this work, bold-face symbols are used to represent tuples, vectors
and matrices. The associated italic symbol with subscripts may be used to refer to individual components: the
symbol i represents an index tuple, ij refers to the jth entry in the tuple. For complex objects, square brackets
followed by subscripts may be used to refer to components: [i]j ⌘ ij .

For example, the tensor-product Bernstein function with index i = (1, 2), degree p = (3, 2) is defined as

B(3,2)
(1,2)(s, t) = B3

1(s)B
2
2(t) (3)

The other construction is the the multivariate Bernstein polynomial basis defined over simplicial elements.
For a simplex of dimension d, the basis of degree p is defined in terms of the barycentric coordinates �i, i 2 [0, d]
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Table 1: Derivatives of Bernstein polynomial
dn

dsn Bp
i (s) evaluated at the endpoints of the interval.

i = 0 i = 1 i = 2 i = 3

p = 1
n = 0

s = 0 1 0 - -
s = 1 0 1 - -

n = 1
s = 0 -1 1 - -
s = 1 -1 1 - -

p = 2

n = 0
s = 0 1 0 0 -
s = 1 0 0 1 -

n = 1
s = 0 -2 2 0 -
s = 1 0 -2 2 -

n = 2
s = 0 2 -4 2 -
s = 1 2 -4 2 -

p = 3

n = 0
s = 0 1 0 0 0
s = 1 0 0 0 1

n = 1
s = 0 -3 3 0 0
s = 1 0 0 -3 3

n = 2
s = 0 6 -12 6 0
s = 1 0 6 -12 6

n = 3
s = 0 -6 18 -18 6
s = 1 -6 18 18 6

and an index tuple ↵ of size d+ 1 of positive integers whose sum is equal to p. The barycentric coordinates are
defined in the usual fashion with �d = 1�

Pd�1
i=0 �i. The ↵-th basis function is given by

Bp
↵(�) = p!

dY

i=0

�↵i
i

↵i!
. (4)

For example, the two dimensional Bernstein polynomial of degree p = 6 with index ↵ = (1, 2, 3) is given by

B3
(1,2,3)(�0,�1,�2) = 6!

(�0)1

1!

(�1)2

2!

(�2)3

3!
= 60�0(�1)

2(1� �0 � �1)
3. (5)

The multivariate Bernstein basis functions possess similar ordering properties to the univariate basis. Addition-
ally, for each boundary of the simplex, the nonzero entries in the basis are precisely the basis for the simplex of
dimension d� 1.

2.2. Bernstein-like basis

Although the focus is primarily on the polynomial Bernstein basis in this work, this is not a necessary
requirement. Mazure proved that quasi extended Chebyshev (QEC) spaces possess a Bernstein-like basis with
the following property: Let E be an (n+1)-dimensional QEC-space on the bounded closed interval [a, b]. Then,
E possesses a quasi Bernstein-like basis relative to (a, b), that is, a basis B0, . . . , Bn such that:

• B0(a) 6= 0, and B0 vanishes n times at b; Bn(b) 6= 0, and Bn vanishes n times at a;

• for 1  i  n� 1, Bi vanishes exactly i times at a and exactly (n� i) times at b.

• for 0  i  n, Bi is positive on ]a, b[.

This property is the key requirement for the U-spline definition and construction and so U-splines can be
constructed from meshes with a QEC space assigned to each element.

2.3. Change of basis

The Bernstein representation admits many closed-form expressions for the change of basis [55]. Here several
relations for Bernstein polynomials are given. Similar results can be obtained for other Bernstein-like bases or
computed directly.

4



A

E

B

C
D

A

E

B

C
D

Figure 1: Subdivision of the pyramid with base ABCD and elevated point E to produce two tetrahedra ABDE and BCDE.

The coe�cients b of a Bernstein polynomial of degree p may be converted to coe�cients b̄ of a Bernstein
polynomial of degree p+ r by multiplication by a matrix:

b̄ = Ep,rb (6)

where the nonzero entries of the matrix are given by

Ep,r
ij =

� r
i�j

��p
j

�
�p+r

i

� , max(0, i� r)  j  min(p, i) (7)

Similarly, the coe�cients b̄ of the Bernstein basis over some interval (s0, s1) can be obtained from the
coe�cients b of the Bernstein basis over the standard unit interval by matrix multiplication:

b̄ = Rs0,s1b (8)

where the nonzero entries of the matrix are

Rs0,s1
jk =

min(j,k)X

i=max(0,j+k�p)

Bp�j
k�i (s0)B

j
i (s1), j  n, 0  k. (9)

3. The Bézier mesh

3.1. Topology and parameterization

Unstructured splines, or U-splines, can be defined over unstructured meshes constructed entirely of elements
that permit either tensor-product or simplicial parameterization. T-junctions are allowed to occur in the mesh.
Each element is assigned a local parametric coordinate system. This system is assumed to be Cartesian on
box-like elements and the parametric coordinates are denoted by either s, t, u or si. Barycentric coordinates are
employed on simplicial elements and the symbols �i are used. It should be noted that for three-dimensional
meshes this approach permits pentahedral prisms produced by a tensor product of a triangle with a line but
does not permit pyramid elements. However, any pyramid element can be replaced by two tetrahedra. This is
illustrated in Figure 1 wherein a pyramid is subdivided into two tetrahedra.

Each element is also assigned parametric dimensions. The most general description possible for the parametric
size of each element is adopted. Each element/edge pair in the mesh is assigned a parametric length. The
parametric dimensions of the boundary of an element must be consistent. For a box-like element, this means
that opposite faces must have the same size in the local parameterization of the element. Adjacent elements
must also satisfy a cycle condition: for each vertex in the mesh, the product of the ratios of adjacent edge
lengths on a subset of the edges emanating from the vertex traversed in a oriented closed loop must be equal to
one. This corresponds to fixing a seamless similarity map between adjacent elements. This approach was first
introduced for T-splines over conformal seamless similarity maps by Campen and Zorin [56].
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Figure 2: Univariate cubic Bernstein basis shown with the adopted indexing convention and corresponding circular markers. Indices

corresponding to nonzero coe�cient values of the basis are indicated with filled markers.

3.2. Element basis and interelement continuity

Each element in the mesh is assigned a basis. The symbol e is used to denote an element index. For
polynomial splines, this amounts to assigning a polynomial degree pe to each simplicial element and a tuple
of polynomial degrees pe to each tensor-product element (one for each parametric direction). If more general
Bernstein-like bases are to be employed then these must be assigned to each element. The symbol Be is used to
denote the set of Bernstein basis functions assigned to an element e. The set of all Bernstein functions over all
the elements in a mesh M is denoted by BM .

Each interface between elements in the mesh is also assigned a required minimum continuity that represents
the minimum number of derivatives that are continuous perpendicular to the interface. Given an interface I, let
k(I) represent the minimum order of continuity of the interface. Note that for certain mesh configurations, the
U-spline basis may be smoother than the specified continuity conditions.

3.3. Element basis indexing

Once an element in the mesh has been assigned a Bernstein-like basis, the individual basis functions on each
element can be uniquely identified in order to impose the required continuity constraints.

The Bernstein basis admits a natural indexing. This indexing is most naturally expressed in terms of the
tuples used in the definition of the polynomial Bernstein basis. A similar indexing exists for Bernstein-like bases
of QEC spaces.

A univariate Bernstein basis is indexed by one number, a tensor-product Bernstein basis is indexed by a
tuple of size d (one number for each direction), and a simplex is indexed by a tuple of size d+ 1. This is called
the Bernstein index. The index set of the Bernstein basis set B is denoted by I(B).

For example, if the set of Bernstein basis functions is the univariate cubic Bernstein polynomials,

B = {B3
0 , B

3
1 , B

3
2 , B

3
3}, (10)

then the index set is
I(B) = {0, 1, 2, 3}. (11)

This basis is shown in Figure 2. The indexing is shown beneath the plot with the marker corresponding to the
plotted function being filled. In most diagrams that follow, the numeric indices are suppressed and dots are used
to indicate the degree of the basis employed. Indices corresponding to nonzero coe�cients are filled.

If the set of Bernstein basis functions is the tensor-product Bernstein polynomials of mixed degree p = (1, 2),

B = {B(1,2)
(0,0) , B

(1,2)
(1,0) , B

(1,2)
(0,1) , B

(1,2)
(1,1) , B

(1,2)
(0,2) , B

(1,2)
(1,2)}, (12)

then the index set is
I(B) = {(0, 0), (1, 0), (0, 1), (1, 1), (0, 2), (1, 2)}. (13)

The indices can be used as coordinates and markers placed at each of the corresponding locations in the element
can be used to indicate the number of basis functions on each element. This is shown for a basis with polynomial
degrees p = (2, 3). Rather than including explicit numeric values for the indices, markers can be used. Both
numeric values and the corresponding markers are shown in Figure 3.

If the set of Bernstein basis functions is the bivariate simplicial Bernstein polynomials of degree p = 2,

B = {B2
(0,0,2), B

2
(1,0,1), B

2
(2,0,0), B

2
(0,1,1), B

2
(0,2,0), B

2
(1,1,0)}, (14)

then the index set is
I(B) = {(0, 0, 2), (1, 0, 1), (2, 0, 0), (0, 1, 1), (0, 2, 0), (1, 1, 0)}. (15)
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Figure 3: Bernstein index and simplified graphical representations.

If the basis used on each element has been specified, each function can be uniquely identified by the element
index and the local Bernstein index. The element and Bernstein indices can be combined to produce a global
Bernstein index (e, i). This unambiguously identifies the Bernstein basis function Be,i. The polynomial degree
p can vary from element to element and so is omitted. Index sets over a specific element or sets of elements
are assumed to include the element and local Bernstein indices; e.g., for the basis Be associated with element e,
having polynomial degree pe = (1, 2), the index set is

I(Be) = {(e, (0, 0)), (e, (1, 0)), (e, (0, 1)), (e, (1, 1)), (e, (0, 2)), (e, (1, 2))}. (16)

For two bilinear elements, e and e0, the index set is

I(Be [ Be0) = {(e, (0, 0)), (e, (1, 0)), (e, (0, 1)), (e, (1, 1)),
(e0, (0, 0)), (e0, (1, 0)), (e0, (0, 1)), (e0, (1, 1))}. (17)

When the meaning is clear from the context, the explicit element index will be suppressed and bold symbols
will be used instead to refer to global indices containing both element index and the local Bernstein index.

3.4. Element index distances

The Bernstein indices on an element form a discrete finite-dimensional space. It is useful to define the
di↵erence vector:

�(i, j) = j� i (18)

and the distance vector d whose entries are the absolute value of the entries of the di↵erence vector:

dk(ik, jk) = |�(ik, jk)|. (19)

A function that provides the distances between an index and the element boundaries is needed. To indicate
direction the parametric index and the sign in the associated direction d±i can be specified. For tensor-product
elements,

d�j (i) =

(
pj � ij , � = +

ij , � = �
(20)

where p = (p0, . . . , pd�1) represents the polynomial degree (or one less than the total number of Bernstein basis
functions in the corresponding dimension for Bernstein-like bases).

For example, consider a tensor product element of degree p = (2, 3) and a Bernstein index i = (1, 3). The
output of the distance function is:

d+0 ((1, 3)) = 1

d+1 ((1, 3)) = 0

d�0 ((1, 3)) = 1

d�1 ((1, 3)) = 3.
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d�0 (i)

d+0 (i)

d+1 (i)

d�1 (i)

Figure 4: An example of element index distances for a given element.

This set of distances is illustrated in Figure 4.
The distance to a specified boundary within an element can also be determined. For an element e bounded

by an interface I the distance from the index i in element e to the boundary I is denoted by dI(i).

3.5. Bernstein-Bézier form

Having defined a mesh with a basis defined over each element, any piecewise function that lies in the function
space of each element in the mesh can be represented in terms of the local basis on each element. This is
accomplished by assigning a coe�cient to each basis function on each element. This is known as the Bernstein-
Bézier form of the function. These coe�cients are indexed by the same indices defined for the Bernstein basis:
bi, where the index i is a global index. Thus, a function f over a mesh M is given by

f =
X

i2I(BM )

biBi. (21)

4. Continuity constraints and splines

A spline is defined as a piecewise function over a given mesh that satisfies continuity constraints on every
interface in the mesh. Splines are often expressed in Bernstein-Bézier form where the vector of Bernstein
coe�cients that define the spline satisfy the set of continuity constraints at every interface in the mesh.

4.1. Continuity constraints

Continuity constraints on functions expressed in Bernstein-Bézier form are now considered. A function over
a mesh is said to have continuity of order k or be Ck at an interface if all derivatives of order less than or equal to
k are continuous between the elements on either side of the interface. A key property of a Bernstein-like basis is
that only the coe�cients nearest the interface participate in a constraint. This is illustrated for a univariate case
in Figure 5. These continuity constraints can be expressed in terms of the coe�cients of the Bernstein-Bézier
form. In general, each continuity constraint for the interface between an element e and a neighbor e0, sharing
an interface I, is expressed as a linear system involving only the Bernstein coe�cients having indices within a
distance k of the interface:

X

i2I(Be)
dI(i)k

cI,1i bi =
X

j2I(Be0 )
dI(j)k

cI,1j bj (22)

...
X

i2I(Be)
dI(i)k

cI,qi bi =
X

j2I(Be0 )
dI(j)k

cI,qj bj. (23)
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be,0 be,1 be,2 be,3 be0,0 be0,1 be0,2 be0,3

`e `e0

C0

C1

C2

Figure 5: The coe�cients that may participate in a C2
constraint are indicated by the filled index sites. The indices of the coe�cients

required for each order of continuity are marked with labeled brackets.

The number of constraints q is dependent on the basis on each element adjacent to the interface and the order
of continuity required at the interface. The values of the constraint coe�cients cI,fi are specific to the local
Bernstein basis on each element. Smoothness constraints can also be expressed in matrix-vector format

SI
ebe = SI

e0be0 (24)

where SI
e is a q ⇥ ne matrix; ne is the number of basis functions on element e. The entries of the SI matrices

are the c coe�cients. This matrix equation can be written in nullspace form:

h
SI
e |� SI

e0

i  be

be0

�
= 0. (25)

The continuity constraints from all interfaces in the mesh M can be collected in a global nullspace expression:

SMb = 0. (26)

The vector b represents the Bernstein coe�cients of every element in the entire mesh. The Bernstein coe�cients
of any function that satisfies the smoothness constraints must lie in the nullspace of the smoothness matrix SM .

4.2. Univariate constraints

One may begin with continuity constraints on functions expressed in terms of univariate Bernstein bases. If the
elements are placed so that the interface I lies at the end of element e and at the beginning of element e0, then
the constraint coe�cients for the constraint of order k are given by

ci =
dkBi

dsk

����
s=`e

(27)

ci0 = ⇢ee0
dkBi0

dsk

����
s=0

(28)

where ⇢ee0 = `e/`e0 and `e and `e0 are the parametric lengths of the elements e and e0, respectively. For example,
any function in Bernstein-Bézier form spanning an interface of continuity k = 2, bounded by elements having a
Bernstein basis of degree 3, must satisfy the following constraints on its coe�cients:

be,3 = be0,0 (29)

3 (be,2 � be,3) = 3⇢ee0 (be0,0 � be0,1) (30)

6 (be,1 � 2be,2 + be,3) = 6(⇢ee0)
2 (be0,0 � 2be0,1 + be0,2) (31)

where ⇢ = `e
`e0

. These constraints can be expressed in matrix form as

Sebe = Se0be0 (32)
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where

Se =

2

4
0 0 0 1
0 0 3 �3
0 6 �12 6

3

5 (33)

and

Se0 =

2

4
1 0 0 0

3(⇢ee0) �3(⇢ee0) 0 0
6(⇢ee0)

2 �12(⇢ee0)
2 6(⇢ee0)

2 0

3

5 . (34)

These matrices can be combined into a single matrix

S = [Se |� Se0 ] =

2

4
0 0 0 1 �1 0 0 0
0 0 3 �3 �3(⇢ee0) 3(⇢ee0) 0 0
0 6 �12 6 �6(⇢ee0)

2 12(⇢ee0)
2 �6(⇢ee0)

2 0

3

5 (35)

and the coe�cients into a single vector

b =


be

be0

�
=

⇥
be,0 be,1 be,2 be,3 be0,0 be0,1 be0,2 be0,3

⇤T
(36)

It is not necessary to restrict the method to the configurations having the same Bernstein space on each
element of the mesh. For example, the smoothness matrices and coe�cient vector for an interface of continuity
C1 where the polynomial degree of the element e is 2 rather than 3 are

Se =


0 0 1
0 2 �2

�
, (37)

Se0 =


1 0 0 0

3(⇢ee0) �3(⇢ee0) 0 0

�
, (38)

S =


0 0 1 �1 0 0 0
0 2 �2 �3(⇢ee0) 3(⇢ee0) 0 0

�
, (39)

b =
⇥
be,0 be,1 be,2 be0,0 be0,1 be0,2 be0,3

⇤T
. (40)

4.3. A general approach to multivariate constraints

Although the expressions for multivariate constraints vary based on the element types on either side of the
interface (tensor-product or simplicial), a common process may be applied. For two elements e and e0 that share
an interface I, the trace spaces of the Bernstein spaces on each element restricted to the interface I is denoted by
Be|I and Be0 |I . The interface space I is defined to be the smallest Bernstein-like space of dimension d� 1 that
contains both trace spaces. In other words, Be0 |I [ Be0 |I ✓ I. On each element, a superspace, B̄e, is introduced
such that Be ✓ B̄e and I ✓ B̄e|I and an associated transformation matrix Me : Be ! B̄e is determined. Several
examples of transformation matrices for common cases are given in Section 2.3. The continuity constraints are
then imposed on the coe�cients in the superspace through the application of Me. To be more precise, the
system of equations that constrain the Bernstein coe�cients across an interface can be written as

S̄
I
eM

I
ebe = S̄

I
e0M

I
e0be0 (41)

where the matrices S̄
I
e and S̄

I
e0 are the constraint matrices across the interface I whose coe�cients are written

in terms of the superspace on each element.
It is important to note that any continuity requirement between two adjacent elements will reduce the local

function space at the interface to the intersection of trace spaces of the two adjacent elements. This means
that Bernstein spaces that share only constants at the interface will only be able to represent constants. This
is primarily of concern for elements with basis functions drawn from QEC spaces. Polynomial bases will always
be able to represent polynomials of the same degree as the element of lowest degree.
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4.4. Constraints between tensor-product elements

The tensor-product basis can naturally be separated into trace and perpendicular function spaces. The base
case occurs when both elements share the same trace space. In this case, each line of coe�cients perpendicular
to the interface must satisfy the univariate constraints presented previously. All other cases may be put in this
form by first performing suitable subdivision and degree elevation operations in the directions parallel to the
interface as described in Section 2.3.

The operators required for the multivariate interface constraints can be constructed by Kronecker products
of the appropriate univariate matrices in each parametric direction. As an example, if the elements e and e0

share an interface, as shown in part (a) of Figure 6, then the transformation matrices Me and Me0 are given by:

MI
e = R0,a ⌦ I3, (42)

MI
e0 = I4 ⌦ (E2,1R0,b) (43)

where a and b are the lengths of the interface in the local coordinate system of each element, Id is the identity
matrix of dimension d, and the matrices E and R are defined in Equations (6) and (9). If a and b each occur at
3/4 along the side of their respective elements, then the matrices are:

R0,a =

2

664

1 0 0 0
1/4 3/4 0 0
1/16 3/8 9/16 0
1/64 9/64 27/64 27/64

3

775 , (44)

R0,b =

2

4
1 0 0
1/4 3/4 0
1/16 3/8 9/16

3

5 , (45)

E2,1 =

2

664

1 0 0
1/3 2/3 0
0 2/3 1/3
0 0 1

3

775 . (46)

The final constraint matrices of superspace basis coe�cients are found by computing the constraints required
to constrain the elements shown in part (b) of Figure 6 to satisfy C1 continuity. Using the univariate constraint
matrices

Se =


0 0 1
0 2 �2

�
, (47)

Se0 =


1 0 0 0

3(⇢ee0) �3(⇢ee0) 0 0

�
(48)

where the ratio of element lengths ⇢ee0 is the ratio of the perpendicular lengths of the elements, the final constraint
matrices are

S̄
I
e = Se ⌦ I3, (49)

S̄
I
e0 = J4 ⌦ Se0 (50)

where J4 is the exchange matrix:

J4 =

2

664

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

3

775 . (51)

The exchange matrix is required because the indexing of element e0 along the interface runs opposite the indexing
of element e.
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Figure 6: Example of the application of constraints for nonmatching tensor-product elements.
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(0,3,0)

(0,0,3)

(0,2,1)

(0,1,2)

(3,0,0)

(1,2,0)

(1,1,1)

(1,0,2)

(2,1,0)

(2,0,1)

e0e

(0,3,0)

(0,0,3)

(0,2,1)

(0,1,2)

(3,0,0)

(1,2,0)

(1,1,1)

(1,0,2)

(2,1,0)

(2,0,1)

ve ve0

I

Figure 7: Example of the indexing used to define simplicial continuity constraints.

4.5. Constraints between simplicial elements

The continuity constraints between simplicial elements have a simple expression in terms of the barycentric
coordinate of the opposite vertex of one simplex expressed in terms of the other. Without loss of generality,
the interface I between the elements e and e0 is assumed to be opposite the vertex with barycentric coordinate
(1, 0, . . . , 0) in both elements. These vertices are denoted ve and ve0 . Let �e

e0 be the barycentric location of
the vertex ve0 in the barycentric coordinate system of element e. This convention is illustrated in Figure 7.
Introducing the notation ↵0 = (0,↵1, . . . ,↵d+1) and ↵m = (m,↵1, . . . ,↵d+1) the constraints of order k can be
written as

be,↵m =
X

kµk1=m

be0,↵0+µB
m,e
µ (�e

e0) (52)

for 0  m  k. The coordinates ↵0 and ↵m satisfy k↵mk1 = p and k↵0k1 = p�m. The C0 and C1 constraints
on the coe�cients for the example shown in Figure 7 are

be,(0,0,3) = be0,(0,0,3), (53)

be,(0,1,2) = be0,(0,1,2), (54)

be,(0,2,1) = be0,(0,2,1), (55)

be,(0,3,0) = be0,(0,3,0), (56)

be,(1,0,2) = be0,(0,0,3) + be0,(0,1,2) � be0,(1,0,2), (57)

be,(1,1,1) = be0,(0,1,2) + be0,(0,2,1) � be0,(1,1,1), (58)

be,(1,2,0) = be0,(0,2,1) + be0,(0,3,0) � be0,(1,2,0). (59)

Constraints between simplicial elements having di↵ering polynomial degrees can be handled similarly to the
tensor-product case where a transformation matrix from the lower degree to the higher degree coe�cients is
computed and used to transfer the constraints. This was considered by Hu et al. [44]. Refinement is handled in
a similar fashion to the tensor-product case where a refined basis is constructed and the constraints are imposed
on the refined coe�cients and then transferred to the original coe�cients.

4.6. Constraints between elements of di↵ering type

In order to compute constraints between elements of di↵ering type (simplicial and cuboidal), a simplicial sub-
domain T of the cuboidal element that shares the interface with the adjacent simplicial element is chosen. An
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e

e0

I

T

e0

Figure 8: Diagram showing the regions used to define constraints between simplicial and cuboidal elements.

auxiliary basis capable of representing the tensor-product basis is defined over this domain and the transforma-
tion matrix T that expresses coe�cients of the tensor-product basis in terms of the simplicial basis is computed.
If the element e is cuboidal then the constraint equation Equation (41) becomes

S̄
I
TM

I
TTbe = S̄

I
e0M

I
e0be0 . (60)

An example of this is shown in Figure 8. The constraints across the interface I between the quadrilateral element
e and the triangular element e0 shown in part (a) are computed by introducing the auxiliary subdomain T shown
in part (b).

4.7. Splines as a solution to a nullspace problem

The Bernstein coe�cients that define a spline must lie in the nullspace of the mesh smoothness constraint
matrix SM :

SMb = 0. (61)

The matrix SM is produced by assembling the smoothness constraint matrices from every interface into one
global matrix. A spline space SM is the function space consisting of all splines over a given mesh M with a local
basis assigned to each element in the mesh and smoothness conditions assigned to each interface in the mesh.

One significant area of research in the theory of splines is the determination of the dimension of a spline space
from a mesh and assigned smoothness constraints. Because the Bernstein coe�cient vectors of all functions in
a spline space lie in the nullspace of the mesh smoothness constraint matrix, the dimension of the spline space
can theoretically be determined from the rank-nullity theorem [34, 35]:

dim(SM ) = dim(BM )� rank(SM ). (62)

This approach quickly becomes intractable for meshes of even moderate size; accurate determination of even the
rank of a large matrix of floating point numbers is a di�cult problem. One approach was given by Alfeld [34].

4.8. Spline bases

An important tool in the definition, construction, and use of splines is the spline basis. As with any vector
space, any spline in a spline space can be represented as a linear combination of the members of a linearly
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independent set of functions having the same number of elements as the dimension of the spline space. Such a
set of functions is referred to as a basis for the spline space.

Let ⌃M be a set of vectors that span the nullspace of SM . In other words, span(⌃M ) = Null(SM ). Assume
that the entries of the vectors can be indexed using the ordering given by I(BM ). Then a set of basis functions
SM that span the spline space SM is given by

SM = {N |N =
X

i2I(BM )

[�]iBi,� 2 ⌃M}. (63)

Here BM is the set of Bernstein basis functions for the entire mesh.
The most recognized example of a spline space and its associated basis is the B-splines or basis splines.

Originating with Schoenberg [57, 58] and commonly defined using the recursive approach of Cox [59], de Boor,
and Mansfield [60], the basis spline functions are the minimally supported spline functions on a partitioning
of an interval. The minimal, compact support of B-splines is significant for both design and analysis. Indeed,
nonuniform rational B-splines (NURBS) form the basis of virtually all previous CAD modeling environments
and have been employed extensively in isogeometric analysis [61] and its predecessors [3].

Much of the previous work on splines outside of B-splines has focused on determining the dimension of the
spline space and then finding a basis for the spline space. This basis is often constructed as an object known as
a minimal determining set, especially in the case of splines over triangulations. Finding a minimal determining
set corresponds to finding a basis of the appropriate size for the spline space. However, it does not provide
any insight into the quality or utility of a basis other than existence. Of more practical use is an algorithm
for the direct construction of a basis for a spline space that satisfies the desirable properties of the B-splines:
minimal support and positivity. An important corollary of the minimal support property of the B-splines that
is not often appreciated is the fact that the minimal support property requires that when a single B-spline
function is expressed in Bernstein-Bézier form, the function is minimally supported in the number of nonzero
Bernstein coe�cients. In algebraic terms, this means that the vectors of Bernstein coe�cients of the B-spline
functions form the sparsest basis of the nullspace of the smoothness constraint matrix. The problem of finding
the sparsest basis for the nullspace of a matrix is known as the Null Space Problem and has been shown to be
NP-hard [62, 63].

The sparsity property of the basis can be observed in the basis of the nullspace of the smoothness constraint
matrix presented in Equation (36). If both elements are the same length, then the ratio ⇢ = 1 and the smoothness
constraint matrix is

SM =

2

4
0 0 0 1 �1 0 0 0
0 0 3 �3 �3 3 0 0
0 6 �12 6 �6 12 �6 0

3

5 (64)

It can be shown that the sparsest basis for the matrix SM is
2

66666666664

1
0
0
0
0
0
0
0

3

77777777775

,

2

66666666664

0
1
1/2
1/4
1/4
0
0
0

3

77777777775

,

2

66666666664

0
0
1/2
1/2
1/2
1/2
0
0

3

77777777775

,

2

66666666664

0
0
0
1/4
1/4
1/2
1
0

3

77777777775

,

2

66666666664

0
0
0
0
0
0
0
1

3

77777777775

(65)

and that these vectors correspond to the rows of the global Bézier extraction matrix for this mesh; i.e. these are
the coe�cients of the B-splines expressed in Bernstein-Bézier form. The associated spline basis functions are
shown in Figure 9.

5. U-spline mesh topology

U-splines are created by grouping collections of Bernstein coe�cients into topological blocks, the size of which
is determined by the continuity constraints assigned to the underlying mesh. We now present the underlying
topological considerations required to construct minimal sets of Bernstein coe�cients which are the used to
construct U-spline basis function.
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Figure 9: Plots of the B-spline basis function coe�cient values (round markers) and the corresponding spline basis functions (thin

lines).

5.1. Element index blocks

A basic structure used to organize the local function indices of the Bernstein bases used in construction of the
U-spline basis is the element index block. An element index block is a set of element function indices grouped
into an oriented block. To specify a block of indices on an element e an orientation � is required that indicates
the outward orientation of the block in each parametric direction, the inner index value µi, and the barrier and
outer index values (µb and µo, respectively) in each parametric direction. The symbol � is used to represent an
element index block. The various properties are indicated by subscript or superscript:

�e,�
µi,µb,µo

. (66)

In situations where not all data is required, the sub- and superscripts are omitted to simplify presentation.
The distance operators for the element index block relative to an interface I must be defined in the parametric

direction(s) perpendicular to the interface and in the direction(s) parallel to the interface. The direction in which
the distance is measured depends on whether the inner, barrier, or outer index bounds is of interest. The relevant
bound is indicated by a superscript. The distances of the inner and barrier bounds are always measured opposite
the outward orientation while the outer bound is always measured in the direction of the outward orientation.
Let I(Ik) represent the set of element indices parallel to the interface I. Then the the inward distances are given
by

[da
I?(�e,�

µi,µb,µo
)]j =

(
µa,j , �j = +

pj � µa,j , �j = �
, j /2 I(Ik), a 2 {i, b} (67)

[da
Ik(�

e,�
µi,µb,µo

)]j =

(
µa,j , �j = +

pj � µa,j , �j = �
, j 2 I(Ik), a 2 {i, b} (68)

and the outward distances by

[do
I?(�e,�

µi,µb,µo
)]j =

(
pj � µo,j , �j = +

µo,j , �j = �
, j /2 I(Ik) (69)

[do
Ik(�

e,�
µi,µb,µo

)]j =

(
pj � µo,j , �j = +

µo,j , �j = �
, j 2 I(Ik). (70)

Unless they are required for clarity, the sub- and superscripts µa, a 2 {i, b, o} and � are suppressed.
As an example, consider an index block on an element e of degree pe = (3, 3), with � = (�,+), µi = (0, 2),

µb = (1, 2), µo = (2, 2) with the interface along the minimum s boundary. For brevity, let �e = �e,�
µi,µb,µo

. The
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di
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db
I? db

I?

I

db
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do
Ik

Figure 10: Example of a single element index block in an element with pe = (3, 3). The boundary values that define the index block

are µi = (3, 0), µb = (1, 2) and µo = (2, 2). The orientation of the block is given by � = (+,�). The distances are all measured

relative to the interface I.

index block distances for this example are

di
I?(�e) = (0) (71)

di
Ik(�

e) = (0) (72)

db
I?(�e) = (1) (73)

db
Ik(�

e) = (1) (74)

do
I?(�e) = (1) (75)

do
Ik(�

e) = (2). (76)

The relevant boundaries and distances for this example are shown in Figure 10.

5.2. Constrained index blocks

5.2.1. Introduction

The idea of a constrained index block can be motivated by several simple observations emanating from the
properties of Bernstein-like bases in one-dimension. The key observation is this: Bernstein-like basis functions
vanish n times at an interface where n is the index distance between the function index i and the interface I.
As a result, if the distance from the index to the interface is greater than the continuity of the interface (i.e.,
n > k(I)), then setting the value of coe�cient bi on element e has no impact on the coe�cients associated with
basis functions between i and the interface I on element e or on element e0. In this case, the constrained index
block only spans the single index i. However, if the index distance is less than or equal to the continuity of the
interface then the constrained index block spans all the coe�cients between i and the interface I on element e
and those having an index within a distance k(I)� n of the interface I on element e0. In other words, all these
coe�cients are constrained by choosing the value of the coe�cient associated with index i on element e.

It is convenient to formalize these observations in terms of element index blocks. Starting with an index
block �e having an outward orientation pointing away from interface I the bounds of the block are initialized so
that the originating index is the only member of �e. If the inner bound of the index block is within a distance
less than or equal to the continuity of the interface I (i.e., di

I?(�e)  k(I)), then the inner bound is adjusted to
match the index location of the interface. An index block in the adjacent element e0 is then constructed with
bounds chosen such that

di
I?(�e0) = 0

and
db
I?(�e0) = k(I)� di

I?(�e).

Here the outward bounds match the barrier: µo = µb. This will always be the case for one-dimensional meshes.
If the index block is far enough from a boundary that it doesn’t couple through that boundary, then another
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Figure 11: The constrained index blocks which can be defined on two elements of degree 3 with a C2
interface (k(I) = 2) between

the elements. In this simple case, each constrained index blocks coincides with the function support of a B-spline function. The

basis functions for this example are shown in Figure 9. The orientation and bounding values for this figure are shown in Table 2.

block is added to represent a closed set of blocks. Several examples for a two-element mesh are shown in
Figure 11. Both elements have polynomial degree p = 3. The interface I between the elements is C2 (k(I) = 2).
All possible constrained index blocks are shown. The constrained index blocks in this example correspond to
the indices of the sets of nonzero coe�cients of the basis functions over this mesh. These basis functions were
considered previously and are shown in Figure 9. The values of each defining property of the element index
blocks that make up each constrained index block shown in Figure 11 are given in Table 2.

5.2.2. Notation

The symbol  is used to represent a constrained index block. Corners are key features of a constrained index
block. The corners of a constrained index block are the indices for which at least d neighboring indices are not
in the index set (d is the parametric dimension of the mesh). The set of indices corresponding to the corners of
a constrained index block are denoted by C(). The set of originating indices from which the constrained index
block can be constructed is called a seed set (seed()). In the univariate case, the corner and seed sets always
coincide but this is not the case for the general multivariate setting.

It is also helpful to define notation for the expansion of a constrained index block across an interface. Given
a constrained index block , the expansion of  is the constrained index block produced by identifying the
corner index ic of  that is nearest the interface I, determining the index block �a that contains the corner,
and constructing a new constrained index block that has an index block �b that shares the corner ic and has
all orientations equal to �a except the one in the direction of the interface I. A constrained index block is
denoted by ✏I(�a). An example of a constrained index block  and its expansion across an interface I is shown
in Figure 12.

5.2.3. The multivariate setting

A multivariate constrained index block is defined as the smallest set of element index blocks having a seed
index i in its corner set and where for each index block �e in the set, there is another index block on an adjacent
element �e0 such that if �Ik(�e) = �Ik(�e0) then either �e|I ✓ �e0 |I or �e0 |I ✓ �e|I ; if �Ik(�e) 6= �Ik(�e0

0 ) then

there is a �e0

1 having �Ik(�e0

1 ) = �Ik(�e), �e|I ✓ �e0

1 |I or �e0

1 |I ✓ �e|I and da
I?(�e0

0 ) = da
I?(�e0

1 ) 8a 2 {i, b, o}.
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(a)

�e
1

� = (�)

(d)

�e

� = (�)
µi = (0) µi = (3)
µb = (0) µb = (3)
µo = (0) µo = (3)

�e
2

� = (+)

�e0

� = (+)
µi = (0) µi = (0)
µb = (0) µb = (2)
µo = (0) µo = (2)

(b)

�e

� = (�)

(e)

�e0

1

� = (�)
µi = (3) µi = (3)
µb = (1) µb = (3)
µo = (1) µo = (3)

�e0

� = (+)

�e0

2

� = (+)
µi = (0) µi = (3)
µb = (0) µb = (3)
µo = (0) µo = (3)

(c)

�e

� = (�)
µi = (3)
µb = (2)
µo = (2)

�e0

� = (+)
µi = (0)
µb = (1)
µo = (1)

Table 2: Orientation and bounding values for the element index blocks in Figure 11.

I

✏()

ic

Figure 12: Illustration of the expansion ✏I() of a constrained index block  across the interface I.
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Such a set can be produced by a flood algorithm. Various considerations required to successfully transition
across di↵erent types of interfaces are given in the sections that follow.

5.2.4. Block transfer across matching interfaces

Two elements match across an interface if the shared interface spans the entire side of both elements and
if the basis in each parametric direction matches in each shared parametric direction parallel to the interface.
For polynomial Bernstein bases this requires pe

Ik = pe0

Ik . In general, the orientations of the two elements e and
e0 will not be aligned and so the equality is assumed to hold only after an appropriate identification between
parametric directions in the two elements has been made. The subscript Ik is used to represent quantities that
have been appropriately transformed to lie on the interface I. Quantities in the perpendicular direction are
marked with I?.

In order to produce a function that is continuous across an element interface, the coe�cients in each line
perpendicular to the interface must satisfy the one-dimensional continuity constraints. When constructing a
constrained index block that spans the interface, this requires that the perpendicular size of the element index
blocks on both sides of the interface must match. Additionally, the same rule used in the one-dimensional case
to construct an element index block on an adjacent element must be applied in the perpendicular direction.

In precise terms, given elements e and e0 that share an interface I and an element index block �e that satisfies
db
I?(�e)  k(I) and di

I?(�e) = 0, construct an element index block �e0 such that

di
Ik(�

e0) = di
Ik(�

e), (77)

db
Ik(�

e0) = db
Ik(�

e), (78)

do
Ik(�

e0) = do
Ik(�

e), (79)

�Ik(�e0) = �Ik(�e), (80)

di
I?(�e0) = 0, (81)

db
I?(�e0) = k(I)� db

I?(�e), (82)

�I?(�e0) 6= �I?(�e). (83)

These requirements are general. There are specific subtleties associated with some configurations but the basic
requirements on adjacent blocks remain the same.

An example of the required relationships is given in Figures 13 and 14. Figure 13 shows two possible
orientations of two elements that share a matching interface I along with the indexing of the Bernstein basis on
each element. Figure 14 shows the layout of two element index blocks that satisfy Equations (77) to (83). The
orientation is indicated by rounding the outermost corner. An explicit indexing is not required to illustrate the
blocks. The bounding values and orientations for the blocks under the two indexing options shown in Figure 13
are given in Table 3.

5.2.5. Block transfer across interfaces adjacent to T-junctions

In order to transition across an interface that is adjacent to a T-junction in the mesh four cases shown in
Figure 15 are considered. Each case corresponds to two possible scenarios: computing an element index block
in the large element, given an element index block in a small adjacent element or computing an element index
block in a small element, given an element index block in the large element. The interface between the elements
is indicated by I. The interface J represents the side of the element that lies in the inward direction of the
element index block and is not parallel to the interface I.

First, consider the scenario of constructing an element index block in the small element, given an element
index block in the large element �e0 . If di

J? = 0 as shown in part (a) of Figure 15 and the index nearest the
T-junction vertex in the small element lies in the inward direction of the outward bounds induced by �e0 then
Equations (77) to (83) are used to produce the index block �e1 . If di

J? = 0 but the interface I is specified so
that the index nearest the T-junction vertex in the small element lies in the outward direction of the induced
outward bound as shown in part (b) of Figure 15, then Equations (77) to (83) are used to produce one index
block �e2

0 . Another element index block �e2
1 is also created that satisfies the perpendicular block requirements
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Figure 13: Two possible orientations of two elements sharing a matching interface.

(a)

�e

� = (�,�)
µi = (2, 2)
µb = (1, 1)
µo = (1, 1)

�e0

� = (+,�)
µi = (0, 2)
µb = (0, 1)
µo = (0, 1)

(b)

�e

� = (+,+)
µi = (0, 0)
µb = (1, 1)
µo = (1, 1)

�e0

� = (�,�)
µi = (2, 2)
µb = (1, 2)
µo = (1, 2)

Table 3: Orientation and bounding values for the element index blocks in Figure 14. The (a) and (b) refer to the two di↵erent

indexing schemes shown in Figure 13
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e e0I

Figure 14: Adjacent element index blocks that satisfy Equations (77) to (83) on adjacent matching elements. The degree of each

element is p = (2, 2) and the interface continuity is k(I) = 1.

Equations (81) to (83) but has the following requirements relative to �e2
0 for the direction parallel to the interface:

�Ik(�e2
1 ) = ��Ik(�e2

0 ), (84)

di
Ik(�

e2
1 ) = 0, (85)

db
Ik(�

e2
1 ) = do

Ik(�
e2
0 ), (86)

do
Ik(�

e2
1 ) = db

Ik(�
e2
0 ). (87)

If the distance di
IkI(�

e0) > 0 and the T-junction is in the inward direction on the small element then the
element index block on the smaller element is expanded so that di

IkI(�
e0) = 0. This is illustrated in part (c) of

Figure 15.
If the distance di

IkI(�
e0) > 0 and the T-junction is in the outward direction on the small element then the

element index block on the smaller element is not expanded and the secondary block is computed as before.
This is shown in part (d) of Figure 15.

5.2.6. Block transfer across interfaces between elements of di↵erent degree

The matching requirements for element index blocks given in Equations (77) to (83) can be used without
modification to construct element index blocks between elements with di↵ering polynomial degree. It is important
to note that although db

Ik(�
e0) = db

Ik(�
e) and do

Ik(�
e0) = do

Ik(�
e), the values of the bounds in the element index

block on the element of higher degree (e0) are not equivalent. In this case, µo(�
e0) 6= µb(�

e0). A two element
example with one element having degree pe = (2, 2) and the other degree pe0 = (3, 3) is shown in Figure 16.
The distinct barrier bound is indicated by a white line. For this case,

di
Ik(�

e) = di
Ik(�

e0) = 0, (88)

db
Ik(�

e) = db
Ik(�

e0) = 1, (89)

do
Ik(�

e) = do
Ik(�

e0) = 1. (90)

5.2.7. Block transfer across interfaces between elements of di↵erent type

The algorithms presented here can also be adapted to accommodate meshes containing elements of di↵ering
types, for example quadrilaterals and triangles or tetrahedra and hexahedra. All elements possess a Bernstein
basis and each Bernstein basis reduces to a Bernstein basis of dimension one less on the boundaries. As such, the
same reasoning can be applied to transfer index blocks across interfaces. The only consideration is the di↵ering
parametric descriptions used on each side. An example of a transfer between a square and a triangle element is
shown in Figure 17. The interface has continuity k(I) = 1.
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�e1
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1 �e2

0

J

J

J

J

Figure 15: Examples of index blocks computed to maintain compatibility across the interface I For these examples, the continuity

of the interface is c(I) = 2.

e e0I

Figure 16: Adjacent element index blocks that satisfy Equations (77) to (83) on adjacent elements having di↵erent polynomial

degree. The degree of the element e is pe
= (2, 2), the degree of element e0 is pe0

= (3, 3), and the interface continuity is k(I) = 2.

Due to the di↵erence in degree between the elements, the barrier bound is di↵erent from the outer bound. The barrier bound is

indicated by a white line.
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e

e0

I

Figure 17: Example of compatible index blocks across the interface I where the adjacent elements are of di↵erent type. The

continuity of the interface is k(I) = 0.

5.2.8. An illustrative example containing multiple adjacent T-junctions

Consider the example in Figure 18. In part (a) , the algorithm is initialized with the element index block �a.
The notion of connections between index blocks is used here. Typical flooding methods require data as to which
directions have already been processed. A connection between two index blocks indicates a processed direction.
Part (b) shows the result of constructing the element index block �b across the interface I and connecting it
to the original block �a. The connections are used to illustrate the relationships between the blocks and are
also useful in determining open boundaries for the flood. Similarly, the element index block �c is constructed
and connected across the interface J . Both of the these blocks conform to �a across their respective shared
interfaces: �a|I = �b|I and �a|J = �c|J . In part (c), the blocks produced by processing �c on interface K and
then processing the resulting block �d on interface L to obtain �e are shown. Part (d) shows the blocks that
are added to account for the presence of the T-junction. Each of the new blocks has an orientation opposite
the base block produced earlier in the flood: �

Ik
1
(�c) 6= �

Ik
1
(�f ), �Ik

1
(�d) 6= �

Ik
1
(�g), and �

Ik
3
(�e) 6= �

Ik
3
(�h).

Each block is connected to the the same blocks as the base block across the relevant interface. Thus, block �f

is connected to blocks �a and �d. Similar connections are made for blocks �f ,�g,�h. The remaining interfaces
perpendicular to I0, I1, I2, I3 are now processed. Part (e) shows the result of processing the open index blocks
�d and �e and the resulting connection between them obtained by processing the interface I3. There is no
element in the open direction for either of these blocks and so the placeholder blocks �i and �j are inserted
and connected. Processing �a across interface I4 produces �k (part (f)) while processing �g across the same
interface produces �l (part (g)). Similarly, in part (h), the blocks �b,�f produce the element index blocks
�m,�n, respectively, when processed across the interface I5 and the element index blocks �c and �h processed
across the interface I6 produce the blocks �o and �p. The flood now terminates as the remaining element index
blocks without connections across interfaces (�k,�l,�m,�n,�o,�p) are subsumed by other blocks that do have
connections across those interfaces (i.e., �n ⇢ �b, etc.).

5.3. Function index support

The set of indices associated with nonzero Bernstein coe�cients in the support of one basis function is referred
to as a function index support. A function index support � is the union of the indices in a set of constrained
index blocks such that

� =
[

2Ki

I() (91)

where the set of constrained index blocks Ki associated with the index i is defined as the smallest set of
constrained index blocks where every member shares at least one corner with another member, at least one
member of the set has the index i as a member of its corner set, and every index o in the boundary set @I(Ki) is
greater than a distance k(I) from every interface I perpendicular to the outward boundary direction associated
with the index o. Additionally, for each element index block � in each possible extension of a constrained index
block , there must be some other constrained index block 0 in the set that has an index block �0 satisfying
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Figure 18: Steps in the flooding algorithm to produce a constrained index block in the neighborhood of a system of T-junctions.25



I0
e0 e1 e2 e3

I1 I2

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

�e0 �e1
1 �e3�e1

2 �e2
1 �e2

2

0 1 2

0 1 2

�

�C(�)

(a)

(b)

(c)

(d)

Figure 19: Univariate mesh consisting of 4 elements with a basis of polynomial degree 3 on each element. The figure shows index,

element, and interface labels (a), the element index blocks that make up the support of the function (b), the constrained index

blocks formed from the element index blocks (c), and the full function index support � with the indices that are part of the corner

set C(�) shown in light grey (d). The properties of the element index blocks are given Table 4.

� ✓ �0. More precisely, in set-theoretic notation, these conditions can be written as

9 2 Ki : i 2 C(), (92)

8 2 Ki, 90 2 Ki : C() \ C(0) 6= ?, (93)

8o 2 @I(Ki), 8I 2 M : I ? n(o),dI?(o) > k(I), (94)

8 2 Ki, 8I 2 @⌦(I()), 8� 2 ✏I()90 2 Ki : � ✓ �0,�0 2 0. (95)

The set of all function index supports defined over a given mesh is denoted by {�A} and the corner set of a
function index support by C(�A). Here we use the operator @ to indicate the boundary of a set. If the set
is a set of indices, then the boundary is all members of the set that are not surrounded on all sides by other
members of the set. The operator producing the normal with respect to an index n is also used. This provides
a parametric direction in which the input index has no neighbors. The parametric support of an index set is
represented by ⌦(I). This represents the union of the parametric domains of all elements having indices in the
set I.

These properties are illustrated for the univariate case through an example. Consider the univariate mesh
shown in Figure 19. It consists of 4 elements, {ei | i 2 {0, 1, 2, 3}} and 3 interfaces {Ii | i 2 {0, 1, 2}}. Each
element is assigned a basis with polynomial degree pei = 3 and the continuity of each interface is k(Ii) = 2. A
seed index is is selected. Here it is assumed that the index carries both the element e and the local index of a
single function. This corresponds to a single Bernstein coe�cient that will be nonzero in our final function. The
minimum set of coe�cients that must be nonzero while still satisfying the continuity constraints on either side of
element e are then determined. The indexing of the relevant quantities is shown in part (a). The element index
blocks that make up the function index support are shown and labeled in part (b). The element index blocks
on elements with more than one block carry an additional identifying subscript. The element index blocks that
make up each of the constrained index blocks i are indicated. The constrained index blocks are shown with
labels in part (c). Finally, the function index support � is shown in part (d) marked in blue along with the
members of the corner index set C(�) marked in red.
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�e0

� = (�)

�e1
1

� = (+)

�e2
2

� = (�)
µi = (3) µi = (0) µi = (3)
µb = (3) µb = (2) µb = (2)
µo = (3) µo = (2) µo = (2)

�e2
1

� = (+)

�e2
2

� = (�)

�e3

� = (+)
µi = (0) µi = (3) µi = (0)
µb = (1) µb = (1) µb = (0)
µo = (1) µo = (1) µo = (0)

Table 4: Orientation and bounding values for the element index blocks in Figure 19.

Several examples of multivariate functions index supports are shown in Figure 20. The constrained index
blocks that make up each function index support are assigned indices from 1-9. The seed indices are marked
with filled circles. Note that some care must be taken when forming the underlying constrained index blocks in
the multivariate setting as described in Section 5.2.

6. U-spline basis construction

As noted previously, for a given mesh there is a basis for the associated spline space that corresponds to the
sparsest basis for the nullspace of the smoothness constraint matrix. Using a brute force approach to solve the
nullspace problem and determine the members of this basis is an intractable problem. To avoid these issues, the
U-spline approach leverages the mesh topology and properties of a Bernstein-like basis in order to incrementally
construct member functions of the sparsest possible spline basis without directly solving the global nullspace
problem. Note that although this approach is generally applicable to bases that satisfy the properties of a
Bernstein-like basis given in Section 2.2, for simplicity, only examples using polynomial Bernstein bases are
considered.

6.1. Outline of U-spline basis construction

A basic outline of how U-spline basis functions are constructed is as follows:

1. Input a mesh containing:

• Cuboidal or simplicial elements and connectivity between adjacent elements.

• Parameteric data assigned to each edge of every element, including parametric length and direction
within the local coordinate system of the element.

• Specification of the desired level of continuity on each interface between elements.

• Su�cient data to define a Bernstein-like basis on each element. For polynomial Bernstein bases, it is
su�cient to specify the polynomial degree in each parametric direction.

2. For each seed Bernstein index:

(a) Construct the function index support that has the seed as a corner through the following steps:

i. Determine a constrained index block having the seed as a corner and mark it.

ii. Mark any unmarked constrained index blocks sharing corners and having minimal overlap with
previously marked blocks until no new blocks can be marked.

iii. if the seed index is not a corner of the function support then continue to the next available seed.

(b) Determine whether a function with the same function index support has already been created.

(c) If the function index support is new, determine the coe�cient values through the following steps:

i. Form the smoothness constraint matrix for the coe�cients corresponding to the indices in the
function index support.

ii. Solve for the vector that defines the nullspace of the constraint matrix. The entries in this vector
are the Bernstein coe�cients that define the function.

3. The functions determined in the previous step must be normalized so that for each index in the mesh, the
sum of all nonzero coe�cients sharing that index for all basis functions over the mesh is equal to one. This
is accomplished by forming and solving a linear system.
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Figure 20: Selected examples of the constrained index blocks used to construct function index supports in the multivariate setting.
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6.2. Construction of function index supports

To make the function index support determination phase of the U-spline construction process more concrete,
additional important details are given. Beginning with a seed index i, Step (1) adds all constrained index blocks
 satisfying i 2 seed() \ C() to the set Ki. Then, in Step (2) the corners of this new set are computed. In
Step (3), all constrained index blocks satisfying C()\ seed()\C(Ki) 6= ? are added to the set. Steps (2) and
(3) are repeated until no new constrained index blocks are added. The steps of this algorithm are illustrated
in Figure 21 for a single function. This example begins with a seed index that is not a member of the final
corner set. Although this approach works well in one-dimension, in a multivariate setting it is wise to choose
seed indices that are located within an element such that they do not couple with any interfaces in at least two
parametric directions.

6.3. Enumeration and uniqueness of function index supports

In contrast to the tensor-product B-spline basis where a natural ordered indexing is inherited from the
ordering of the univariate B-splines and the tensor-product construction, U-splines do not possess a natural
ordering. Instead, a property inherited from the sparsity of the U-spline basis is employed. By construction,
each function must have a unique function index support and because each function is the sparsest possible
function in the index space, each function must have at least one index corner that it shares with no other
function. As a result, the label set L(�A) of a function index support can be defined as the subset of the corner
set where

L(�A) = C(�A) \
[

B 6=A

C(�B). (96)

A unique natural number is then assigned to each label set. Leveraging label sets is particularly important for
performant implementations of U-splines where the usage of the full support of a function as a key in a map is
impractical.

It should be noted that there is no direct topological connection between the parametric mesh and the natural
connectivity of the function control points. The construction of U-spline control meshes will be addressed in a
future work.

6.4. Determining function coe�cient values

Once the function index support of a single function has been determined, the values of the coe�cients
associated with the indices in the support can be determined. This is accomplished by forming a restricted
smoothness constraint matrix for only the coe�cients with indices that lie in the function index support. Given
a function index support set �, the smoothness constraint matrix S� is formed by removing all columns from
the global smoothness matrix S that correspond to indices i /2 �. Also, any rows consisting entirely of zeros
after this removal step are also removed. If the remaining matrix is empty, then the values of all coe�cients
will be one (this will only occur for supports with only one entry). Otherwise, the nullspace of the resulting
matrix S� will be one-dimensional. A vector of coe�cients b� is then obtained by solving the following linear
constraint system:

minimize kb�k, (97)

subject to S�b� = 0, (98)

b� > 0. (99)

This problem can be solved as a linear programming problem by a simplex method or similar technique.

6.5. Normalization of the basis

As described previously, each U-spline basis function is defined by a function coe�cient vector b�A
. For

simplicity �A is dropped in favor of A. These vectors represent the coe�cients of a non-normalized basis for the
U-spline space. To produce a basis that forms a partition of unity, the coe�cient vectors must be normalized.
The normalized basis is obtained by solving the linear system

⇥
b0 b1 · · · bn

⇤
⌫ =

2

6664

1
1
...
1

3

7775
(100)
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initial seed index i

find constrained index blocks
with i as a corner

add to support and find new corners

find constrained index blocks
with shared corners

final set of constrained index blocks Ki

final index support � of function

Figure 21: Illustration of the steps of the flooding algorithm for determining the function index support for the function shown in

Figure 19.
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where n is the total number of basis functions defined over a mesh. The normalized vectors of coe�cients are
given by ⌫AbA. Because any basis for a U-spline space can be normalized, all coe�cient vectors presented
hereafter are assumed to be normalized.

Theorem 1. Any basis for a U-spline space can be normalized to form a partition of unity.

Proof. By definition, a U-spline space must satisfy the continuity conditions at every interface in the mesh. When
expressed in Bernstein-Bézier form, each U-spline basis function in the spline space corresponds to a vector of
Bernstein coe�cients bA. Each of these vectors lies in the nullspace of the global smoothness constraint matrix.
The simplest nontrivial member of the spline space is the constant function. This function is represented in
Bernstein-Bézier form as a constant vector. By definition, a set of U-spline basis functions {N̄A} for the U-spline
space spans the space and is linearly independent. Because the constant vector is a member of the nullspace,
there is a unique set of coe�cients ⌫A such that

X

A

⌫AN̄A = 1. (101)

6.6. An illustrative mixed degree example in one-dimension

The U-spline algorithm provides a natural construction for the basis of multi- or mixed-degree splines. The
algorithm presented here functions equally well regardless of the polynomial degree as long as the continuity for
each interface between elements is less than or equal to the polynomial degree in the direction perpendicular to
the interface on both elements adjacent to the interface.

An example of a three element mesh with mixed degree is shown in Figure 22. The polynomial degrees for
the elements are pe0 = 2, pe1 = 3, and pe2 = 4. The element lengths are `e0 = 1/4, `e1 = 1/3 and `e2 = 5/12.
The continuity of the interfaces is k(I0) = 1 and k(I1) = 2. The nonzero coe�cients of each basis function are
indicated by the filled dots below the plots of the figures. The constrained index blocks for each function are
also shown.

The global smoothness constraint matrix for this example, as determined by the U-spline algorithm, is

S =

2

66664

0 0 1 �1 0 0 0 0 0 0 0 0
0 �8/3 8/3 3 �3 0 0 0 0 0 0 0
0 0 0 0 0 0 1 �1 0 0 0 0
0 0 0 0 0 �15/4 15/4 4 �4 0 0 0
0 0 0 0 75/8 � 75/4 75/8 �12 24 �12 0 0

3

77775
. (102)

The resulting coe�cient vectors which define the U-spline basis functions can be arranged as the rows of a matrix
commonly called the extraction operator:

C =

2

666666664

1 0 0 0 0 0 0 0 0 0 0 0
0 1 8/17 8/17 0 0 0 0 0 0 0 0
0 0 9/17 9/17 1 155/331 75/331 75/331 0 0 0 0
0 0 0 0 0 176/331 19360/38727 19360/38727 55/117 0 0 0
0 0 0 0 0 0 32/117 32/117 62/117 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1

3

777777775

. (103)

It can be verified that the extraction operator satisfies SCT = 0. The extraction operator can be used to
generate the spline basis in terms of the Bernstein basis over the mesh:

2

666666664

1 0 0 0 0 0 0 0 0 0 0 0
0 1 8/17 8/17 0 0 0 0 0 0 0 0
0 0 9/17 9/17 1 155/331 75/331 75/331 0 0 0 0
0 0 0 0 0 176/331 19360/38727 19360/38727 55/117 0 0 0
0 0 0 0 0 0 32/117 32/117 62/117 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1

3

777777775

BM =

2

666666664

N0

N1

N2

N3

N4

N5

N6

3

777777775

(104)
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Figure 22: Example of a basis constructed over a mesh of mixed degree. The elements have degree 2, 3, 4, from left to right. The

elements have lengths of 3, 4, and 5, respectively. The interfaces have continuity k(I0) = 1 and k(I1) = 2. The functions are plotted

with the index support indicated below the plotted functions. Constrained index blocks are marked with shaded regions.

where the vector of Bernstein basis functions over the mesh is

BM =

2

4
Be0

Be1

Be2

3

5 (105)

and the element Bernstein basis vectors are

BT
e0 =

⇥
B2

e0,0 B2
e0,1 B2

e0,2

⇤
, (106)

BT
e1 =

⇥
B3

e1,0 B3
e1,1 B3

e1,2 B3
e1,3

⇤
, (107)

BT
e2 =

⇥
B4

e2,0 B4
e2,1 B4

e2,2 B4
e2,3 B4

e2,4

⇤
. (108)

6.7. Construction of multivariate U-splines

The U-spline algorithm for multivariate meshes operates on a similar principle of constructing function
supports from sets of compatible constrained index blocks with accommodations made for the structure of the
multivariate mesh. Whereas only a perpendicular direction exists for each interface in a one-dimensional mesh,
higher dimensional meshes have directions that lie parallel to the interface which must be properly handled during
block transfer across interfaces. These block transfer rules have been presented in detail for two-dimensional
meshes in Section 5.2. Analogous rules can easily be defined for three-dimensional meshes (or higher dimensions).

It should be noted that there are actually several distinct approaches to computing function index supports
that could be considered. The first, which has been presented in this work, uses the rules given here to construct
constrained index blocks and then to find minimally supported collections of constrained index blocks by flooding
in order to generate the function index supports. Second, it is also possible to use the rules for constrained index
block construction given here to compute constrained index blocks and then find the minimal combination by
searching for a minimal contiguous set of constrained index blocks that satisfy the continuity constraints. This
is computationally more expensive. Third, it is possible to compute the constrained index blocks directly from
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the constraint matrix without leveraging the principles given here and then computing a minimal set of these
blocks. This is more e�cient than the generic nullspace problem but is the least e�cient method given here. All
three methods leverage the locality of constrained index blocks to improve over the global method.

6.8. Latent constraints

In regions of the mesh where transitions in the properties assigned to mesh features occur in close proximity,
additional complexities arise. In this work, transitions of scale (T-junctions), degree, and continuity are consid-
ered. Nonpolynomial Bernstein-like bases can introduce a fourth class of transitions that is functionally similar
to the case of degree transitions.

The algorithms for the construction of constrained index blocks presented to this point have illustrated min-
imal sets of Bernstein indices required by simple interface continuity constraints. In some cases, the coe�cients
that lie beyond the minimal set of a single constraint must be considered. One example of this is shown in
Figure 23. Part (a) of Figure 23 shows the indices of all the Bernstein coe�cients that are coupled by the
C2 constraint. Part (b) shows the constrained index block created from the index indicated by the filled dot.
The continuity constraint also induces latent constraints on coe�cients with indices within a distance 2 of the
interface. Latent extentions to the constrained index block are illustrated in part (c) of Figure 23. The coe�-
cients with indices inside the gray areas are constrained by their proximity to the interface. If any one of the
coe�cients in one of the gray regions is nonzero then all of the coe�cients in that region must also be nonzero.
If one attempted to set one of the coe�cients to be nonzero without the others, it would be impossible to satisfy
the continuity constraints. This follows from the fact that multiple basis functions from the small elements are
required to represent a single function from the large element.

A similar situation occurs at the interface between elements of di↵ering polynomial degree. This actually
holds for elements with di↵ering numbers of basis functions having a nontrivial intersection of their trace spaces
such as QEC Bernstein-like bases containing polynomials of some order. In this situation, more than one function
is required to represent an adjacent function. An example is shown in Figure 24 where the constrained index
blocks associated with indices on the lower degree (cubic) side are shown by the filled areas. The index locations
are labeled. If the coe�cient associated with the index ia is nonzero and the coe�cient associated with the index
ib is also nonzero, then the coe�cient associated with id must also be nonzero. The same restriction applies to
each pair of indices surrounded by a gray block. Another case is shown for the index if .

In the simple examples considered heretofore, these latent constraints have not been considered but they are
required for more complex examples, especially those involving adjacent transitions in perpendicular directions.

Consider the mesh of biquadratic elements shown in Figure 25. Part (a) of the figure shows the constrained
index block computed from the seed index marked with a filled dot without considering the latent constrained
index blocks. The latent blocks are shown in part (b) with the indices at which they intersect the previously
computed support marked with filled dots. In part (c) the constrained index block has been expanded to include
the relevant latent regions. The function index support computation is then continued to produce the upper left
block shown in part (d).
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(a)

(c)

(b)

Figure 23: Indices of coe�cients constrained by C2
interfaces and a T-junction (a). Constrained index block generated by the index

associated with the filled dot (b). Latent extensions to the constrained index block are shown in gray (c).

b c

d e

g h

i j
f

a

Figure 24: Selected examples of constrained index blocks for two elements of di↵erent polynomial degrees and the latent constrained

index blocks (gray).
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(a) (b)

(c) (d)

Figure 25: Example of constrained index blocks computed for a function over elements containing adjacent perpendicular T-junctions.
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A similar situation occurs for perpendicular adjacent continuity transitions. A simple mesh containing edges
with continuity C1 and C2 is shown in Figure 26. The edges with C1 continuity are marked with dashed lines
while the edges with C2 continuity are marked with dotted lines. All elements have been assigned a bicubic
polynomial basis. Part (a) of Figure 26 shows the constrained index block computed from any of the indices
having a filled marker. The index blocks that make up the constrained index block are outlined with solid
lines. The latent constrained index block due to the continuity transition is indicated by the dashed line. The
constraint system assembled for the coe�cients inside the index blocks bounded by the solid lines cannot satisfy
the continuity constraints. In order to successfully compute a basis function, the latent block must be added to
the support as shown in part (b) of Figure 26. Contrast the constrained index block shown in part (b) where
the index support is square with the constrained index block shown in part (c) where the index support is not
square. The seeds of the block shown in part (c) are positioned so that the support of the constrained index
block extends beyond the support of any latent blocks.

One last example is presented that illustrates the implications of the function support requirement given
in Equation (95). Part (a) of Fig. Figure 27 shows the function support that satisfies the function support
requirements given in Equations (92) to (94) produced by using the index marked with a black filled dot as the
seed. The shaded region indicates a portion of a latent constrained index block. Adding this block and satisfying
(95) requires the addition of the index blocks shown in part (b) of Figure 27 to the function support. The full
final support is shown in part (c).

We define the following concepts in order to incorporate latent constraints into the U-spline algorithm:

Augmented constrained index block. We define the augmentation of a constrained index block as the set of all
index blocks that can be formed by starting with the index blocks in the input constrained index block and
then adding any index block that can be produced by transferring across an interface without expanding the
support of the initial constrained index block. We also add any blocks that when transferred across a face will
produce an index block that exists in the set. An example is shown in Figure 28. Part (a) shows the constrained
index block constructed in the neighborhood of two adjacent continuity transitions. In part (b), the index blocks
added to form the augmented version are shown with red dashed lines.

Connections between constrained index blocks. Two constrained index blocks can be considered to be connected
if any corner of one overlaps with the corner of any index block in the augmented constrained index block of the
other and if the index blocks that share a corner are oriented in all the same directions but one. Any corners
that can be connected to another constrained index block are termed closed in the direction of the connection.

Activation of latent constraints. We say that a latent constraint is activated if it overlaps with any of the
corners of the augmented constrained index blocks in the support of the function. An example of this is shown
in Figure 27.

Measurement of constrained index blocks. In the construction of multivariate U-splines, there are multiple choices
of open corners at each step. In order to sort these choices, we introduce the parametric size of a constrained
index block. Once a constrained index block has been created, the parametric size is computed by counting the
number of active or nonzero Bernstein coe�cients on each cell and multiplying that number by the parametric
size of the cell divided by the total number of Bernstein basis functions in the basis defined over the cell. We
have found that sorting potential constrained index blocks by the parametric size to be useful.

An example is shown in Figure 29. If the outer square has a parametric length of 1 on each side, then
element e1 has area 1/2 while elements e2 and e3 have area 1/4. There are 9 functions on each element so each
nonzero coe�cient contributes 1/9. There are 4 nonzero coe�cients on small elements in block 1 and 2 nonzero
coe�cients on the large element so the total size is 2/9. Block 2 consists of 3 nonzero coe�cients on the small
elements so the total size is 1/12.

6.8.1. Modifications to the U-spline algorithm

We modify the U-spline algorithm to accommodate the definitions and concepts presented in this section by
replacing steps 2 (a) i-iii with the following steps:

i. Determine a constrained index block having the seed as a corner and mark it.

ii. Iterate all open corners of previously processed constrained index blocks and add the largest constrained
index block having one of the open corners as a corner to the set.

iii. Compute the augmented constrained index block of the new block and activate any latent blocks.
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(a) (b)

(c)

C1

C2

Figure 26: Example of constrained index blocks computed for a function over elements containing adjacent perpendicular continuity

transitions.
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(a) (b)

(c)(c)

Figure 27: Example of a cubic function built from the index marked with a black dot to satisfy the support requirements given in

Equations (92) to (94) in part (a). Part (b) shows the additional index blocks required by activation of the latent block marked

with a filled region in part (a) and subsequently satisfying (95). The full final support is shown in part (c).
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(a) (b)

Figure 28: Part (a) shows the initial constrained index block. Part (b) shows the resulting augmented constrained index block with

the additions highlighted with red dashed lines.

e0

e2e1

1

2

Figure 29: Two examples of measurement of constrained index blocks. The parametric size of block 1 is 2⁄9 and the size of block 2

is 1⁄12.
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iv. If no open corners produce constrained index blocks that extend the support, then terminate.

7. Storage and representation of U-splines

Practical applications of the U-spline basis require e�cient methods to store the basis functions and data
associated with the basis functions. In order to represent a U-spline, the mesh must be stored along with the
parametric data specifying edge lengths and the order of continuity of every interface. Enough data to specify
the basis on each element must also be saved. For cuboidal elements with polynomial bases, it is su�cient to
store the polynomial degree in each parametric direction. More general Bernstein-like bases require additional
data. For simplicial elements, just a single polynomial degree is su�cient.

The primary requirement for use of a U-spline is a persistent indexing of the basis functions so that arrays of
properties may be associated with the proper basis function. This is accomplished by pairing an integer index
with at least one Bernstein index that is unique to the spline basis function. This unique index is su�cient to
rebuild the function index support by using it as a seed. Other storage strategies are also possible; it may be
beneficial to store all of the corners unique to a given function or all of the elements in the function support.
Regardless of the extra data that may also stored, one unique corner must be stored. Any additional data is
e↵ectively prioritizing computation over storage as any properties of the basis may be computed from the unique
corner using the corner as a seed for the U-spline construction.

It may also be advantageous to store the representation of the basis. The simplest approach is to store a
map for each basis function that returns the coe�cient value associated with each index in the function index
support. An optimal approach is to store pointers to the unique mathematical expressions that, when evaluated
at a specific parametric location, evaluate the basis. In this way, the redundancy in uniform mesh regions can
be significantly reduced.

When using U-splines in computations, it is necessary to know which functions are defined on each element
and what the values of the coe�cients of the local basis that represent each function are. This data can be stored
explicitly, but again, by storing pointers to the unique expressions used in the basis, all information necessary
to use the basis in computations can be stored in an optimally compressed format.

8. Examples of multivariate basis construction

Several examples that illustrate fundamental di↵erences between the U-spline approach and previously de-
veloped technologies are now presented.

To begin, an example of a single U-spline basis function is shown to demonstrate several of the unique features
of the construction. Part (a) of Figure 30 shows a Bézier mesh. Each element has a basis of polynomial degree
3 in each direction. Each internal interface has C2 continuity. The nonzero indices associated with this function
are shown with filled circles. The shade of the circle indicates the relative value of the associated coe�cient. Part
(b) shows a contour plot of the function. Part (c) shows a three-dimensional surface produced by setting the z
value of the control point associated with the function to 1. This example was chosen to highlight a significant
di↵erence between U-spline basis functions and many other splines such as B-splines, T-splines, and LR-splines
among others. Most splines rely on tensor-product bases which are square. The U-spline construction is clearly
capable of producing bases that are not generated by a tensor product.

A Bézier mesh consisting of nested T-junctions is considered next. Three instances of the same mesh are
shown in Figures 31 to 33. In Figure 31, each element is assigned a bilinear basis and each edge is C0. In Fig-
ures 32 and 33, the elements have biquadratic and bicubic bases, respectively. The interfaces of the mesh with
biquadratic elements are C1 while the mesh with bicubic elements has C2 interfaces.

The control points and boundaries of the elements are shown in part (a) of each figure. It can be seen from
the element boundaries that the basis is capable of representing a linear map. The basis function associated
with the control point marked with a filled black circle is shown in parts (b-d) of each figure. Part (b) shows
the indices of the nonzero Bernstein coe�cients, shaded by the relative amplitude. The index support of each
function possesses a notch in the upper-right hand corner of the support that would not be present in a tensor-
product construction. The contour plot in part (c) of each figure exhibits an indentation due to the notch in
the index support. This is most apparent in the linear case shown in Figure 31. Again each function clearly
cannot be produced by a tensor product. Part (d) of each figure shows the surface produced by elevating just
the control point associated with the highlighted basis function.

An example to illustrate one potential application of the ability to mix elements of di↵ering polynomial
degrees is now given. The polynomial degree of each element in the mesh shown in part (b) of Figure 34 can be
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(a) (b)

(c)

Figure 30: A single U-spline basis function. Part (a) shows the nonzero Bernstein-Bézier coe�cients, part (b) shows a contour plot

of the function while part (c) shows a three-dimensional plot.

(a) (b)

(c) (d)

Figure 31: An example basis function from a Bézier mesh containing nested T-junctions. Each element has a basis of polynomial

degree 1. The control points of all functions are shown in part (a) with the control point of one function marked. Parts (b-d) show

the values of the Bernstein coe�cients, a contour plot, and a three dimensional plot of the function, respectively.
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(a) (b)

(c) (d)

Figure 32: An example basis function from a mesh containing nested T-junctions. Each element has a basis of polynomial degree

2. The control points of all functions are shown in part (a) with the control point of one function marked. Parts (b-d) show the

values of the Bernstein coe�cients, a contour plot, and a three dimensional plot of the function, respectively.

(a) (b)

(c) (d)

Figure 33: An example basis function from a mesh containing nested T-junctions. Each element has a basis of polynomial degree

3. The control points of all functions are shown in part (a) with the control point of one function marked. Parts (b-d) show the

values of the Bernstein coe�cients, a contour plot, and a three dimensional plot of the function, respectively.
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(a) (b)

(c) (d)

Figure 34: Example of a single basis function defined over a mesh of mixed polynomial degree. The control points producing a

linear parameterization are shown in part (a). The control point corresponding to the highlighted function is highlighted. The index

support and coe�cients (b), contour plot (c), and three-dimensional surface (d) of the function are shown.

determined from the number of dots drawn on each element. The degree in each direction is one less than the
number of dots. It can be seen that the mesh has one bilinear element, 5 biquadratic elements, one cubic element,
one element of degree (2, 3) and one of degree (3, 2). All interfaces are C1. The bilinear element is joined smoothly
to the adjacent elements and so were it not for the increase in degree in the elements immediately adjacent to
the bilinear element, the linear functions would impact functions defined over elements not immediately adjacent
to the lower degree element. The introduction of the cubic region isolates the bilinear element from all other
elements in the mesh other than those that are immediately adjacent. This is a generally useful technique to
isolate local features.

All of the control points that define a linearly parameterized geometry for the basis are shown in part (a)
of Figure 34. The basis function highlighted corresponds to the control point marked with a filled dot. The
nonzero coe�cients indicated by filled dots in part (b) of the figure form an L. This pattern is reflected in the
basis function. The contour plot shown in part (c) and the three-dimensional surface plot of the function in
part (d) both clearly exhibit an L shape. This is another instance in which the U-spline construction produces
functions that cannot be produced by other methods. It should also be noted that the function is formed from
a mixture of smoothly joined quadratic and cubic basis functions.

Another function from the same basis is shown in Figure 35. The highlighted function corresponding to the
filled dot in part (a) is chosen to illustrate the smooth transition between the bilinear and higher degree elements
in the U-spline.

Figure 36 shows a simple mesh consisting of both triangular and quadrilateral elements. All elements have
polynomial degree 2. The edges of the triangle are C0 while all other edges are C1. The highlighted function
spans both element types. The C1 transitions on all edges not shared with triangles are apparent.
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(a) (b)

(c) (d)

Figure 35: Example of a single basis function defined over a mesh of mixed polynomial degree. The control points producing a

linear parameterization are shown in part (a). The control point corresponding to the highlighted function is highlighted. The index

support and coe�cients (b), contour plot (c), and three-dimensional surface (d) of the function are shown.
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(a) (b)

(c) (d)

Figure 36: An example basis function from a mesh having both triangular and quadrilateral elements.
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9. Conclusion

This paper describes an algorithm to construct smooth spline bases over unstructured meshes. We call
the resulting splines U-splines. The U-spline construction relies on the introduction of an atomic unit for the
construction of basis functions derived from the local continuity constraints on the Bernstein-Bézier form of the
local basis. These units are referred to here as constrained index blocks. The construction of these units relies
only on the properties of a Bernstein-like basis on each element. A basis function is constructed by determining
a minimally coupled set of constrained index blocks. The members of this set represent the nonzero coe�cients
of a single basis function. The numerical values of the corresponding coe�cients can be solved through linear
programming. We conjecture that for appropriate meshes, the spline basis functions constructed using this
method have minimal support in the number of nonzero Bernstein coe�cients. This reduces the sparsest null-
space problem associated with determining the minimally supported spline basis from a NP-hard global problem
to a series of local linear programming problems. The determination of the nonzero coe�cients relies only on
the mesh topology, the specified interelement contiuity, and the dimension of the local Bernstein basis on each
element.

Previous constraint based approaches such as polynomial splines over T-meshes have restricted the local
degree of elements to be greater than twice the interelement continuity [19, 64]. This reduces the support and
coupling of the basis functions but also prevents the construction of basis functions possessing maximal continuity.
The U-spline algorithm enables the construction of bases with maximal continuity over more complex meshes.

The flexibility with which continuity, local basis, and scale may be mixed in the U-spline construction
while still producing a well-defined basis is unprecedented and provides significant new opportunities in design,
analysis, optimzation, and beyond.

9.1. Future work

The use of constrained index blocks is a novel approach to determining the nonzero Bernstein coe�cients for
explicit construction of basis functions. It remains to be seen if this perspective will provide new avenues for
the explicit determination of spline basis dimension.

It has been observed that spline basis dimension can be sensitive to the relative scale of local mesh features
[35]. We conjecture that in these settings the U-spline algorithm will produce a basis for the lower dimensional
space. The U-spline construction is purely topological and hence cannot detect these features.

A proof of the uniqueness of the basis functions produced on arbitrary meshes has not been attempted. We
have not observed any degenerate configurations in our research.

Another area in which the U-spline approach may yield significant advances is the construction of spline
bases on triangular or tetrahedral meshes. Only the C0 case was considered here but the basic philosophy of
the constrained index block is su�ciently general to be applied to higher continuity interfaces.

We also conjecture that the unique corner property of the U-spline basis can be connected to both global
linear independence and polynomial completeness of the basis.

9.2. Benefits and applications enabled by U-splines

9.2.1. U-spline shape representations

U-splines are an e�cient and robust representation of shape due to their unprecedented flexibility and
mathematical precision. This is especially true in the context of CAD data. U-splines possess the precision of
NURBS, the current CAD standard, with far more capability to represent complex geometry and topology in
a watertight, mathematically rigorous fashion. No superfluous design parameters are required in U-spline CAD
due to the ability to perform geometrically exact element subdivision, change the degree of collections of faces,
and change the smoothness of edges.

9.2.2. U-spline CAE technologies

U-splines can be used directly in CAE applications because the underlying basis is believed to be analysis-
suitable. The unique properties of the U-spline basis, such as smoothness, enable more robust, accurate, and
e�cient simulation results than traditional approaches to CAE, such is finite element analysis (FEA). Introducing
exact U-spline geometry into simulation also improves simulation behavior since a faceted approximation is
replaced by the smooth exact CAD geometry.
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9.2.3. CAD-CAE integration

The integration of U-splines into existing CAD and CAE software, as well as the creation of new U-spline-
based CAD-CAE software, has the potential to substantially address and eliminate the following serious ine�-
ciencies:

• Preparing an entire automobile for a crash simulation is extremely expensive, requiring many weeks in
manual labor to convert the CAD data and prepare the simulation mesh for analysis, and results in the
CAE and CAD data getting out of sync.

• In the aerospace, defense, and automotive industries, nearly 80% of simulation time is spent converting
and preparing the CAD geometry (Hardwick and Clay, cited on page 3 of Cottrell et al. [61]).

• In smaller firms that don’t employ simulation experts, products are commonly over-engineered or im-
properly engineered because of the complexity and limitations of getting data into CAE software, which
prevents its proper use in the design process.

• Even expert CAE engineers run into limitations when accuracy is lost as they convert exact CAD data to
faceted CAE meshes; this especially limits the possibility of exploiting new manufacturing processes like
generative design and additive manufacturing.

The result of these ine�ciences is that hundreds of millions of dollars are wasted annually across key global
industries like automotive, aerospace, and defense due to the di�culty in transitioning CAD data to CAE
software to run simulations [65]. Attempts to eliminate this data translation problem in the past have resulted
in limited simulation capability or created an inferior process.

In contrast, U-splines have an underlying mathematical formulation which makes it possible to use a U-spline
basis for both design and simulation, resulting in a completely integrated IGA approach.

9.2.4. Topology optimization, shape optimization, and generative design

Structural design based on topology and shape optimization and other generative design techniques are
becoming increasingly important since they are capable of producing optimal, lightweight structures that can
be manufactured using three-dimensional printing techniques. However, the resulting designs are often complex
organic shapes represented as a dense triangulation that is not suitable for CAD. The process of turning the
triangulation into a CAD object is a manual, error-prone, labor intensive process which limits the practical
application of the approach. U-splines have the potential to significantly improve this situation because they
are the first CAD representation which is flexible enough to be used directly in the optimization framework and
as the output CAD format. As a result, all data translation steps can be eliminated and the output U-spline
CAD can be either converted back into a traditional CAD format based on NURBS or taken directly as the
CAD object.

The small number of parameters required to represent smooth shapes using U-splines is also advantageous in
optimzation problems as it has the potential to dramatically reduce the size of the system. It is also guaranteed
that the smoothness of the input shape will be preserved.

9.2.5. Volumetric data representation

There are many applications in which data needs to be representated throughout the volume rather than
just on the surface or boundary. U-splines provide an e�cient representation of the internal region of an object
and thus enable true volumetric representation of data.

New additive manufacturing techniques make it possible to design and manufacture complex parts with
non-uniform material composition. Traditional CAD B-reps can only describe the outside envelope of a part
and assume uniform material composition. Techniques such as B-rep slicing can be used to extend the amount
of internal material variance possible within a B-rep solid, but still place strict limitations on how detailed the
material layout can be. In contrast to B-rep CAD, the precise mathematical definition of U-splines can be
extended to three-dimensional volumetric representations which can then be tailored through local adaptivity
to capture complex material composition in a precise manner.
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