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Abstract

In this paper we develop the isogeometric Bézier dual mortar method. It is based on Bézier
extraction and projection and is applicable to any spline space which can be represented in Bézier
form (i.e., NURBS, T-splines, LR-splines, etc.). The approach weakly enforces the continuity
of the solution at patch interfaces and the error can be adaptively controlled by leveraging
the refineability of the underlying slave dual spline basis without introducing any additional
degrees of freedom. As a consequence, optimal higher-order convergence rates can be achieved
without the need for an expensive shared master/slave segmentation step. We also develop
weakly continuous geometry as a particular application of isogeometric Bézier dual mortaring.
Weakly continuous geometry is a geometry description where the weak continuity constraints
are built into properly modified Bézier extraction operators. As a result, multi-patch models
can be processed in a solver directly without having to employ a mortaring solution strategy.
We demonstrate the utility of the approach on several challenging benchmark problems.

Keywords: Mortar methods, Isogeometric analysis, Bézier extraction, Bézier projection

1 Introduction

Isogeometric Analysis (IGA), first introduced by Hughes et al. [1], adopts the Computer-aided
design (CAD) basis as the basis for analysis. This unifying paradigm has the potential to eliminate
the costly geometry clean-up and mesh generation steps which encumber traditional simulation
pipelines and improve simulation accuracy through a higher-order smooth basis [1, 2, 3, 4]. To
introduce additional flexibility into the isogeometric approach, weak coupling techniques are often
used to sew together models composed of multiple patches. These approaches can accommodate
patches with differing parameterizations and trimming [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. However,
if not done properly, these coupling techniques can negatively impact the accuracy and robustness
of the analysis [5, 6, 15].

In this paper, we present a new local dual mortar method for the coupling of nonconforming
higher-order smooth meshes that is based on Bézier extraction and projection [16]. Since it is a
biproduct of the Bézier extraction and projection framework, it can be employed during the creation
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and editing of geometry through properly modified extraction operators and is applicable to any
spline space which has a representation in Bézier form (i.e., NURBS, T-splines, LR-splines, etc.).
For this reason, we call the method the isogeometric Bézier dual mortar method. Since the dual
basis can be refined in a fashion which is similar to the corresponding spline basis, the error in the
method can be adaptively controlled without adding any additional degrees of freedom to the linear
system. Additionally, optimal higher-order convergence rates can be achieved without the need for
an expensive master/slave segmentation step to build a shared mesh over which mortar integrals
can be calculated. We feel that this is a critical property for the method to be of practical use in an
isogeometric context where complex, smooth, higher-order parameterizations are used for both the
master and slave surfaces making segmentation impractical. All numerical examples show that the
proposed method works equally well for arbitrary pairings of the master and slave patches. We also
develop weakly continuous geometry as an application of dual mortaring in the context of geometric
design. A weakly continuous model embeds weak continuity constraints directly into the geometry
description. In this way, multi-patch models can be processed in a solver directly, without having
to employ a dual mortaring approach during the construction of the linear system.

1.1 A review of weak coupling methodologies

To provide some context and background for the method proposed in this paper, we provide a brief
review of existing weak coupling methodologies that have been used in FEA and IGA. There is
a vast literature on the subject so only those contributions most closely related to the proposed
approach have been included in the overview.

The penalty method [17, 5, 6] weakly imposes a coupling constraint by introducing a penalty
term into the variational formulation. It is simple to implement and it does not introduce any
additional degrees-of-freedom. The drawback is that, to get an accurate result, a problem and mesh
dependent penalty parameter must be selected. This parameter, if not properly adjusted during
mesh refinement, results in ill-conditioned linear systems [5].

The Lagrange multiplier method employs a field of Lagrange multipliers to weakly enforce a
coupling constraint. For structural mechanics problems, the field of Lagrange multipliers can be
interpreted as the traction forces across an interface. In the context of mesh coupling, this method is
also called the mortar method [18]. The additional Lagrange multiplier field leads to a saddle point
variational formulation, which requires that the Lagrange multiplier space satisfy inf-sup stability
and ideally have enough approximability to recover optimal convergence rates [19, 18]. In the
context of IGA, the mortar method was first used to couple multiple non-uniform rational B-splines
(NURBS) patches by Dornisch et al. [20], and then applied in nonlinear elasticity by Hesch and
Betsch [9]. Brivadis et al. [15] explored several choices for the Lagrange multiplier space theoretically
and numerically.

The Nitsche method [21], originally introduced for the weak treatment of Dirichlet boundary
conditions, is a method that has a variational structure between the Lagrange multiplier and penalty
methods. In this approach, the Lagrange multiplier in the variational formulation is replaced by
the normal flux, and an extra penalty-like stabilization term is added to restore the coercivity of
the bilinear form. This method has been applied to the coupling of non-conforming meshes in
many areas, including IGA [12, 5, 7, 8]. Like the penalty method, the stabilization term contains a
parameter which must be estimated [5].

The approach proposed in [22, 23] embeds the coupling constraints into the finite element space
directly, thus leading to a positive definite nonconforming variational problem. Based on [22, 23],
Wohlmuth [24, 25] then proposed a local dual Lagrange multiplier space and called the resulting
formulation a dual mortar method. In contrast to a standard Lagrange multiplier method, in a dual
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mortar method the Lagrange multipliers can be eliminated easily leading to greater computational
efficiency. In addition, the compact support of the local dual basis along with the biorthogonality
preserves the sparsity of the stiffness matrix. Unfortunately, it is not easy to construct a local dual
basis that possesses a high-order polynomial reproduction property [26, 27].

Dornisch et al. [10] developed a dual mortar method based on a global B-spline dual basis,
and derived a relation matrix which enabled a condensation of the Lagrange multiplier degrees-of-
freedom. A similar relation matrix is derived by Coox et al. [11] by inserting virtual knots on either
side of an interface. This method is mathematically identical to the global dual method in [10] but
is more efficient. However, it is limited to the case where the neighboring patches have the same
degree and parameterization along the interface, which is a very restrictive requirement. Seitz et
al. [13] proposed a local dual mortar method based on a NURBS basis for both patch coupling and
contact mechanics. In this case, the local dual basis does not satisfy the polynomial reproduction
property, so only reduced convergence rates are obtained. Other types of local dual basis functions,
such as, the explicit de Boor-Fix dual basis [28, 29, 30] and the approximate dual basis [31] are
explored in [14]. The de Boor-Fix dual basis functions have the same support as the B-spline basis
functions. However, the polynomial reproduction property does not hold, leading to significantly
deteriorated convergence rates. The approximate dual basis fulfills the polynomial reproduction
property but not biorthogonality. Therefore, the fully populated inverse matrix of the original
mortar matrix must be approximated by a diagonal matrix to maintain the locality. This implies
that the coupling constraints are not imposed exactly. Even though several numerical examples
show that the approximate dual mortar method achieves convergence rates which are comparable
to the global dual mortar method, a mathematical analysis of the effects of the approximation is
still missing.

The outline of this paper is as follows. In Section 2, we briefly review fundamental concepts
for splines and dual bases which are needed throughout the paper. Section 3 describes multi-patch
domain decomposition and the model problem we will use to define our method. Isogeometric
Bézier dual mortaring is then described in Section 4. We then define weakly continuous geometry
and its relationship to Bézier dual mortaring in Section 5. Several challenging benchmark problems
are solved in Section 6 to illustrate the properties of the method. We then draw conclusions in
Section 7.

2 Spline fundamentals and dual bases

2.1 Bézier, B-spline, and NURBS fundamentals

The ith Bernstein polynomial of degree p on [ξ1, ξ2] can be defined as

Bi,p(ξ) =

(
p

i− 1

)(
ξ2 − ξ
ξ2 − ξ1

)p−i+1( ξ − ξ1

ξ2 − ξ1

)i−1

, (1)

where
(
p
i−1

)
= p!

(i−1)!(p−i+1)! is the binomial coefficient.

The set of Bernstein polynomials B(ξ) = {Bi,p(ξ)}p+1
i=1 forms a basis for the space of polynomials

of degree p. The Bernstein polynomials B̃(ξ̃) defined on [ξ̃1, ξ̃2], can be related to the Bernstein
basis B(ξ) defined on [ξ1, ξ2] through the relation

B̃(ξ̃) = (M)−TB(ξ) (2)
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with M the transformation matrix. A formula for the inverse of the transformation matrix M can
be found in [32] and is written as

(M)−1
jk =

min(j,k)∑
l=max(1,j+k−p−1)

Bl,j−1(ξ2)Bk−l+1,p−j+1(ξ1), 1 ≤ j, k ≤ p+ 1. (3)

A degree p Bézier curve in Rd can be written as

x(ξ) =

p+1∑
i=1

Pi Bi,p(ξ), ξ ∈ [ξ1, ξ2] (4)

where Pi is called a control point. A univariate B-spline basis is defined by a knot vector Ξ =
{ξ1, ξ2, . . . , ξn+p+1}, which consists of a non-decreasing sequence of real numbers, ξi ≤ ξi+1, i =
1, . . . , n+ p+ 1, where p is the degree of the B-spline basis functions and n is the number of basis
functions. The ith B-spline basis function of degree p, denoted by Ni,p(ξ), can be recursively defined
by

Ni,0(ξ) =

{
1, if ξi ≤ ξ < ξi+1

0, otherwise

Ni,p(ξ) =
ξ − ξi
ξi+p − ξi

Ni,p−1(ξ) +
ξi+p+1 − ξ
ξi+p+1 − ξi+1

Ni+1,p−1(ξ).

A B-spline curve can be viewed as the smooth composition of multiple Bézier curves. A B-spline
curve of degree p can be written as

x(ξ) =

n∑
i=1

PiNi,p(ξ), ξ ∈ [ξ1, ξn+p+1] (5)

and a pth-degree NURBS curve can be written as

x(ξ) =

n∑
i=1

PiwiRi,p(ξ), ξ ∈ [ξ1, ξn+p+1] (6)

where the NURBS basis function Ri,p is defined by

Ri,p(ξ) =
Ni,p(ξ)

W (ξ)
(7)

where Ni,p(ξ) is the ith p-degree B-spline basis functions,

W (ξ) =
n∑
i=1

wiNi,p(ξ) (8)

is the weighting function, and wi is the weight corresponding to Ni,p(ξ). Since a NURBS curve is a
rational polynomial it can be used to exactly represent conic sections. Higher dimensional analogs
to these concepts can be created using tensor products or more advanced construction schemes like
T-splines or hierarchical B-splines.
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2.2 Bézier extraction

The Bézier extraction process [33, 34] generates a linear operator, called the extraction operator,
that maps a Bernstein basis onto a B-spline basis. In the context of one-dimensional B-splines, the
extraction operator encodes the result of repeated knot insertion [35] such that the multiplicity of all
interior knots of a knot vector is p+1. At the element level, the resulting linear transformation, Ce,
is called the element extraction operator. This element-level operator is used to map a Bernstein
basis B defined over an element e onto a B-spline basis restricted to that same element. In other
words, Ne = CeB. See [33, 34] for additional details.

2.3 Dual bases

Suppose Bp is a (p+1)-dimensional linear space generated by a set of linearly independent functions
{bi}p+1

i=1 of maximal degree p. Given an inner product (·, ·) : Bp×Bp 7→ R, the functions from the set

λp := {λi}p+1
i=1 (9)

satisfying the following conditionsspanλp = Bp,

(bi, λj) = δij , 1 ≤ i, j ≤ p+ 1
(10)

form the so-called dual basis corresponding to the basis {bi}p+1
i=1 with respect to the inner product

(·, ·). The first condition in (10) is called the reproduction property of order p and the second
property is called the biorthogonality property. With local dual mortar method, (p − 1)-order
reproduction property of the Lagrange multiplier space is required to guarantee the optimality of
the finite element space of order p [27].

3 Problem description

3.1 Domain decomposition

Let Ω be a bounded domain decomposed into K non-overlapping subdomains Ωk, i.e.,

Ω =
K⋃
k=1

Ω
k
, and Ωi ∩ Ωj = ∅, i 6= j.

We define the interfaces as the interior of the intersections of the boundaries, i.e., Γ` = ∂Ωi ∩ ∂Ωj .
On each Ωk the solution space Sk is defined as

Sk = {uk ∈ H1(Ωk),uk|∂Ω∩∂Ωk = u0}

where H1(Ωk) are the standard Sobolev spaces and u0 are the Dirichlet boundary conditions. The
corresponding weighting function spaces, Vk, are similarly defined with homogeneous boundary
conditions on ∂Ω∩ ∂Ωk. The displacement solution space on Ω is then the broken Sobolev space S
defined as S =

∏K
k=1 Sk, along with continuity conditions defined along the interfaces. To simplify

the exposition of the proposed mortaring technique, we employ a two-patch geometry with one
interface, i.e., K = 2. The interface is denoted as Γ = ∂Ωm ∩ ∂Ωs, where the superscripts m and s
are used to denote the master and slave patches, respectively.
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Figure 1: A schematic of the linear elastic model problem.

3.2 A linear elastic model problem

To ground our approach in a practical example, we consider the following linear elasticity problem:

div σ + b = 0 in Ω = Ωm ∪ Ωs (11a)
u = u0 on Γu = Γmu ∪ Γsu (11b)

σ · n = t0 on Γσ = Γmσ ∪ Γsσ (11c)
um = us on Γ (11d)

where Γu ∩ Γσ = ∅, Γu ∩ Γ = ∅, Γσ ∩ Γ = ∅, σ is the stress tensor, b is the body force, u0 and t0

are the prescribed Dirichlet and Neumann boundary conditions applied on Γu and Γσ, respectively
and n is the unit outward normal vector on ∂Ω, see Figure 1. The kinematic coupling condition
um = us is introduced along the interface Γ where um and us are the master and slave interface
displacements, respectively.

The total potential energy Π of the system Ω is

Π(u) = Πm(um) + Πs(us) +

∫
Γ̂

Φ · (um − us) ds (12)

where Πm and Πs are the potential energy on Ωm and Ωs, respectively, and Φ is a Lagrange
multiplier weakly enforcing the continuity constraint along the interface. Invoking the stationarity
of Π with respect to um, us and Φ, we obtain the weak formulation of (11) that reads as: find
um ∈ Sm, us ∈ Ss and Φ ∈ S` such that for all variations δum ∈ Vm, δus ∈ Vs and δΦ ∈ V`

δΠ∗(u, δum) = δΠm(um, δum) +

∫
Γ̂

Φ · δum dΓ = 0 (13a)

δΠ∗(u, δus) = δΠs(us, δus)−
∫

Γ̂
Φ · δus dΓ = 0 (13b)

δΠ∗(u, δΦ) =

∫
Γ̂
δΦ · (um − us) ds = 0 (13c)
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where Sm, Ss and S` are the displacement solution approximation spaces on Ωm and Ωs and
the Lagrange multiplier space, respectively, and Vm, Vs and V` are the corresponding weighting
function spaces. Note that in (12) we define the interface energy on the parametric domain of the
slave interface, denoted by Γ̂, which results in the interface continuity condition (13c). As will be
shown subsequently, this will allow us to define a dual basis which is independent of geometry, an
important simplification which improves the efficiency of the approach.

4 Isogeometric Bézier dual mortaring

We will choose the Lagrange multiplier spaces to be those spanned by a dual spline basis defined
over Γ̂ which emanate from the Bézier extraction and projection framework. A weighted dual basis
for each element domain Γ̂e is defined as

N̄e = diag(ωe)(Re)T (Ge
B,B)−1Be,s (14)

= DeBe,s (15)

where Be,s is the set of Bernstein polynomials defined on the eth slave interface element and

Ge
B,B =

[∫
Γ̂e

Be,s
i (ξs)Be,s

j (ξs) ds

]
(16)

is the Gramian matrix for the Bernstein basis [16? ], Re is the element reconstruction operator [16]
and De is called a dual element extraction operator. Note that Re is restricted to the element
boundary Γ̂e. We use the standard Bézier projection weighting, i.e.,

ωei =

∫
Γ̂e N

e,s
i ds∫

Γ̂I N s
I(i,e) ds

(17)

where Γ̂I is the domain of support for the interface basis function N s
I and I(i, e) is a standard

mapping from element nodal indexing to a global index I. While other weightings could be used
this weighting has been shown to give particularly accurate results [16]. We can easily show that
the proposed dual basis satisfies the biorthogonality condition (10) by noting that∫

Γ̂e

N̄e(Ne,s)Tds = diag(ωe) (18)

and

A
e

[∫
Γ̂e

N̄e(Ne,s)T ds

]
= I. (19)

where A is the usual finite element assembly operator. In other words,∫
Γ̂
N̄IN

s
Jds = δIJ (20)

as desired.
Note that even though this dual basis does not possess a higher-order polynomial reproduction

property [36], optimal higher-order rates can be easily recovered through a simple refinement step.
A theoretical explanation for this behavior is beyond the scope of this paper and will be pursued in
a subsequent publication.
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4.1 Rational dual basis functions

If rational basis functions are used, we define the dual basis as

R̄I = WN̄i (21)

where W is the rational weight given in (8). Now∫
Γ̂
R̄IR

s
J ds =

∫
Γ̂
N̄IN

s
J ds = δIJ . (22)

4.2 Discretization

Over the slave interface we introduce the discretizations

um =
∑
I

Nm
I (ϕ(ξs)) dmI (23)

us =
∑
I

N s
I (ξs) dsI (24)

δΦ =
∑
I

N̄I(ξ
s) δΦI (25)

where ξs ∈ Γ̂s is a parametric position on the slave interface and ϕ : Γ̂s → Γ̂m is a compositional
mapping defined to be

ϕ = (xm)−1 ◦ xs (26)

where xs : Ω̂s → Ωs and xm : Ω̂m → Ωm are the slave and master geometric mappings, respectively,
as shown in Figure 2. Note that we say the master and slave parameterizations are matched if the
mapping ϕ is linear, otherwise, we say the master and slave parameterizations are mismatched. In
the mismatched case ϕ can be computed using the Newton-Raphson algorithm.

Note that discretizing (13c) and leveraging the biorthogonality property of the dual basis gives

ds = GN̄,Nmdm. (27)

where

GN̄,Nm =

∫
Γ̂
N̄I(ξ

s)Nm
J (ϕ(ξs)) Ids (28)

is a diagonal matrix.
The matrix form of (13) can be written asKm 0 (K`m)T

0 Ks −(K`s)T

K`m −K`s 0

dm

ds

d`

 =

fm

f s

0

 (29)

where Km and Ks are standard patch-level stiffness matrices, fm and f s are the corresponding
force vectors, and K`m and K`s are stiffness matrices with all entries equal to zero except for those
related to the Ith Lagrange multiplier basis N̄I and the Jth master and slave interface basis Nm

J

and N s
J , respectively. In other words, the nonzero entries of K`m and K`s can be written as

K`m
N̄I ,N

m
J

=

∫
Γ̂
N̄IN

m
J ds (30)
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Ω̂m Ω̂s

Ωm Ωs

ξm1

ξm2

ξs1

ξs2

ξs
ξm = ϕ(ξs)

xs(xm)−1

xm(ξm) = xs(ξs)

Figure 2: Slave and master geometric mappings, xs and xm.

and

K`s
N̄I ,N

s
J

=

∫
Γ̂
N̄IN

s
Jds = δIJ . (31)

The displacement vectors dm and ds can be split such that

dm =

[
dmd
dmc

]
and ds =

[
dsd
dsc

]
(32)

and the corresponding stiffness matrices Km, Ks, K`m and K`s are

Km =

[
Km
dd Km

dc

Km
cd Km

cc

]
Km =

[
Ks
dd Ks

dc

Ks
cd Ks

cc

]
K`m =

[
0

K̂`m

]T

and K`s =

[
0

K̂`s

]T

(33)

where the subscript d indicates the distinct degrees-of-freedom internal to each patch, and c indicates
the degrees-of-freedom along the interface. The entries of K̂`m and K̂`s are defined in (30) and (31),
respectively. Substituting (32) and (33), and the relation (27) between dsc and dmc into (29) allows us
to statically condense the Lagrange multiplier coefficients d` and the slave patch degrees-of-freedom
dsc leading to the simplified systemKm

dd Km
dc 0

Km
cd Km

cc + (GN̄,Nm)TKs
ccGN̄,Nm (GN̄,Nm)TKs

cd

0 Ks
dcGN̄,Nm Ks

dd

dmd
dmc
dsd

 =

 fmd
fmc + (GN̄,Nm)Tf sc

f sd

 . (34)

Note that all problems in this paper are solved with this simplified system of equations rather
than (29).

If the interface energy term in (12) is defined on the physical domain instead of the parametric
domain the dual basis must be defined as

N̄e =
1

|J|
diag(ωe)(Re)T (Ge

B,B)−1Be,s (35)

=
1

|J|
DeBe,s (36)

where J is the Jacobian of the geometric mapping xs.
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4.3 Refinement of the dual basis

If the master and slave parameterizations are matched, the underlying basis have the same degrees,
and the knots along the master interface are contained in the slave interface the interface constraint
(13c) is imposed exactly. In this case, GN̄,Nm is then a standard spline refinement operator. In
any case, the approximation can be improved without adding additional degrees-of-freedom to the
global system by refining the slave interface and dual basis. We highlight that if the slave interface
is refined, quadrature error accumulates if the new lines of reduced continuity in the slave interface
are not accounted for in the element domains Ω̂s,e which touch the slave interface. For example,
in Figure 3, two quadratic, linearly parameterized B-spline patches meet at a common interface. A
refinement is performed in which all knots in the master interface which are not already present
in the slave interface are added, i.e., the knot 1

2 is inserted into the slave interface. To properly
account for the new line of reduced continuity in the slave interface element e2, it is subdivided
into two elements e21 and e22 and quadrature is performed on both subelements. The nodes whose
basis functions are supported by element e21 are depicted in Figure 3. Note that the method is
stable under refinement since dual basis refinement adds the same number of Lagrange multiplier
degrees-of-freedom as slave interface degrees-of-freedom. As a result, the matrix K`s in (29) has full
row rank.

For the case where many mismatched patches are required to define a geometric domain more
advanced local refinement schemes could be utilized such as those commonly used for analysis-
suitable T-splines [37]. In fact, the process described in Figure 3 for inserting master knots into
the slave interface is a particular type of local T-spline knot insertion. For most of cases considered
in this paper, two global uniform refinements of the slave interface was enough to recover optimal
higher-order convergence rates.
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Ωs

Ωm

e21

e22

master interface CPs

slave patch CPs

refined slave interface CPs

CPs of element e21

ξ1

ξ2

Figure 3: Refinement of a slave interface and corresponding control points (CPs).
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5 Weakly continuous geometry

Since the weak continuity constraint is defined on the parametric domain of the slave interface Bézier
dual mortaring can also be viewed as an isogeometric design methodology for building multi-patch
geometry where the weak continuity constraint is built into the space spanned by the geometric
basis. In this case, weak geometric compatibility is preserved for any choice of control points and
the dual mortaring no longer needs to be incorporated into the finite element assembly algorithm.
To build the weak continuity constraint into the element extraction operators we start by noticing
that

Nm = (GN̄,Nm)TNs (37)

which can be localized to each element on the interface

Nm,e = (Ge
N̄,Nm)TReBe,s (38)

= R̃eBe,s (39)

where R̃e is called a weakly continuous element extraction operator. Since

R̃e = (Ge
N̄,Nm)TRe (40)

it is clear that each row of R̃e (which corresponds to a master basis function) is formed by taking
a linear combination of rows in Re (which correspond to slave basis functions) where the weighting
in the linear combination comes from the columns of Ge

N̄,Nm .
If the slave interface is refined, then (37) can be written as

Nm = (GN̄r,Nm)TNr (41)

where Nr is the refined slave interface basis vector. Similarly, (38) can be written as

Nm,e = (Ge
N̄r,Nm)TRe,rBe,r = (Ge

N̄r,Nm)TRe,rM−TBe,s (42)

where Re,r is the standard element extraction operator defined on the refined slave interface, and
M is the Bernstein basis transformation matrix defined in (3). Therefore, the weakly continuous
element extraction operator can be written as

R̃e = (Ge
N̄r,Nm)TRe,rM−T. (43)

Figure 4 shows the action of (43) for the interface element e21 in Figure 3 and the resulting weakly
continuous two-dimensional basis functions along the interface are shown in Figure 5. The full
expressions for the weakly continuous element extraction operators R̃e are given in the A.
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0 1/3 2/31/2 1

Nm
1

Nm
2 Nm

3

Nm
3

N r
1

N r
2

N r
3 N r

4

N r
5

N r
6

(a) Master interface basis (top) and refined slave
interface basis (bottom).

1/3 1/2

 1/3 2/31/3 1/2

 1/3 1/2

Ne,r

Ne,m

Be,r

Be,s

Ge
N̄r,Nm

Re,r

M−T

R̃e = (Ge
N̄r,Nm)TRe,rM−T

(b) Transformation of basis functions for element
e21.

Figure 4: Construction of a refined interface extraction operator for element e21 from Figure 3.
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(a) First interface basis. (b) Second interface basis.

(c) Third interface basis. (d) Fourth interface basis.

Figure 5: Weakly continuous basis functions along an interface corresponding to the mesh shown in
Figure 3.
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6 Numerical results

We evaluate the performance of the Bézier dual mortar method on several challenging benchmark
problems. In all cases, dual basis refinement is employed where, during the first step of refinement,
the master knots are projected into the slave interface. Subsequent refinement then utilizes uniform
element subdivision of the slave interface. To avoid the well-known mortar integral error in calcu-
lating GN̄,Nm in (28) when no refinement of the dual basis is employed, the master knots are still
projected into the slave interface and the integration is performed on the combined knot intervals
as described in [14]. Note that the first step of refinement might generate subelements with high
aspect ratios if the projected master knots are too close to the original slave interface knots. These
knots can be easily filtered out. In this work, if the parametric interval of a slave subelement is
less than 1
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th of the original parametric interval the projected master knot is ignored. Note that
during the first step of refinement, uniform subdivision could also be employed. However, a small
error would be incurred due to the integration error in calculating GN̄,Nm . However, for complex
parameterizations in three-dimensions (including volumetric parameterizations) this error may be
an acceptable trade-off to avoid an expensive combined master/slave segmentation step. We com-
pare our method to a global dual mortar method [10, 14], where the global dual basis is computed
using L2 projection.

6.1 A manufactured solution on a square domain

We first solve the Laplace equation, −∆u = 0, on the square domain, Ω = (0, 1)×(0, 1). The domain
is modeled with two maximally smooth quadratic B-spline patches where the left patch is the master
and the right patch is the slave as shown in Figure 6. Two different boundary conditions, shown in
Figure 6a and b, are considered to demonstrate that, in contrast to the global dual mortar method,
the Bézier dual mortar method does not suffer from the so-called crosspoint problem [14, 15]. This
superior performance is due to the locality of the dual basis functions. Both boundary conditions
satisfy the manufactured solution, u (x, y) = sin(πy) sinh(πx). The ratio of master to slave element
size is initially chosen to be 2 : 3. The master and slave interface boundaries are matched but the
underlying meshes are nonconforming.

The sparsity patterns for the stiffness matrices for the proposed method, a global dual mortar
method, and a standard conforming method are shown in Figure 7a, 7b, and 7c, respectively, after
four applications of uniform global refinement. It is clear that the proposed method generates a
sparse stiffness matrix with only a slight increase in bandwidth when compared to a conforming
method.

We first present results for the boundary condition shown in Figure 6a. The convergence rates
of the displacement error in the L2-norm for several different degrees are shown in Figure 8a. The
proposed approach is compared to a global dual mortar method. As can be seen, the global dual
mortar method only gets optimal rates for p = 1, and for p = 2, 3, 4 the convergence rates are 2,
which is suboptimal. This reduction in the rates can be attributed to the crosspoint problem [14, 15].
In other words, the Lagrange multiplier space is bigger than the primal space due to the crosspoint,
which, in this case, corresponds to the points where the interface and Dirichlet boundary conditions
intersect. As a result, inf-sup stability is lost. Without refinement of the dual basis, the proposed
method achieves optimal rates for p = 1, and slightly deteriorated rates for p = 2. For p = 3, 4,
the convergence rates are reduced but still converge faster than the global dual mortar method. To
demonstrate the insensitivity of the method to master and slave selection, we change the mesh ratio
to m : s = 3 : 2. The convergence rates are shown in Figure 8b. As can be seen, the convergence
rates are close to the previous case, m : s = 2 : 3.
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(b) Dirichlet-Neumann boundary conditions

Figure 6: Two quadratic maximally smooth nonconforming B-spline patches.

We now refine the proposed dual space to improve the accuracy. The convergence rates are
shown in Figure 9. As expected, with one refinement of the interface dual basis the proposed
method obtains optimal convergence rates for all degrees p = 1, 2, 3, and 4 for both mesh ratios
m : s = 2 : 3 and m : s = 3 : 2.

The second boundary condition case, shown in Figure 6b, allows for a comparison of the proposed
method with the global dual method without crosspoint pollution. As shown in Figure 10, the
optimality of the global dual mortar method can be observed for this case, while the proposed
method behaves in a similar fashion as in the first full Dirichlet boundary condition case. Again,
with one refinement, the Bézier dual mortar method obtains optimal rates as shown in Figure 11.
This demonstrates that the proposed method is relatively insensitive to crosspoint pollution. This
superior behavior can be attributed to the locality of the dual basis. The reduced rates in the
proposed method without refinement is due to the lack of higher-order polynomial reproduction in
the dual basis.

We next investigate the impact of mismatched parameterizations on the results. Mismatched
parameterizations can be created by perturbing the position of the control points along the master
and/or slave interfaces. To avoid crosspoint pollution we only consider the Dirichlet-Neumann
boundary condition case. The convergence results for mesh ratio m : s = 2 : 3 without refinement
are shown in Figure 12. Again, the global dual mortar method obtains the optimal rates for p = 2, 3
and 4. Without refinement of the dual basis, the Bézier dual mortar method behaves in a manner
which is similar to the matched parameterization case. To improve solution behavior we refine the
dual basis. The resulting convergence rates are shown in Figure 13. Since the geometric mapping
is no longer linear, the continuity constraint (13c) cannot be imposed exactly by refining the dual
basis once. Therefore, optimal rates cannot be achieved. However, we can improve the accuracy
by simply refining the dual space additional times. As shown in Figure 13, for p = 2, 3, uniformly
refining the dual space once recovers optimal rates and refining twice recovers optimal rate for
p = 4. Recall that regardless of how many times the dual space is refined the number of global
degrees-of-freedom remains fixed.
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(a) The proposed method (b) A global dual mortar method (c) A conforming method

Figure 7: Stiffness matrix sparsity patterns for (a) the proposed method, (b) a global dual mortar
method, and (c) a standard conforming method. The nonconforming examples (i.e., (a) and (b)) are
generated from nonconforming meshes after uniformly refining the initial mesh shown in Figure 6
four times. The resulting mesh has 13862 nodes. The conforming example in (c) is generated from
a mesh with 13860 nodes.

We next study the case where both the parameterizations and degrees are mismatched. In
this case, the degree of the master patch is one order higher than the slave patch. As shown in
Figure 14, without refinement of the dual basis, optimal rates are only obtained for the case pm = 3,
ps = 2 and mesh ratio m : s = 2 : 3. Note that the optimal rates are bounded by the lower degree
among the different patches. As expected, refining the dual basis improves its approximation ability.
Therefore, optimal rates are obtained for pm = 4, and ps = 3 with both mesh ratios, m : s = 2 : 3
and m : s = 3 : 2.

6.2 A manufactured solution on an annular domain

We now solve the Poisson equation, −∆u = f , on the annular domain, Ω =
{

(r, φ) | 0.4 ≤ r ≤ 4,
π/2 ≤ φ ≤ π

}
. This example tests the effectiveness of rational dual basis functions. The domain is

composed of two NURBS patches as shown in Figure 15. The internal force and the boundary con-
ditions correspond to the manufactured solution, u (x, y) = sin(πx) sin(πy). As shown in Figure 15,
there are no crosspoints in this problem. Note that we only consider matched parameterizations in
this example.

The convergence rates in the L2-norm of the displacement are shown in Figure 16 for p = 2, 3, 4,
without refining the dual basis. As can be seen, the global dual mortar method achieves the optimal
rates for all degrees and mesh ratios m : s = 2 : 3 and m : s = 3 : 2. The proposed method achieves
the optimal rates for p = 2, 3 and m : s = 2 : 3, and slightly deteriorated convergence rate for
p = 4. For mesh ratio m : s = 3 : 2, the proposed method experiences reduced convergence rates for
p = 3, 4. However, one refinement recovers optimal rates for p = 4 with mesh ratio m : s = 2 : 3,
and p = 3 and 4 with mesh ratio m : s = 3 : 2, as shown in Figure 17.

We next investigate mismatched degrees. For degrees pm = ps − 1 and mesh ratio m : s = 3 : 2,
the convergence rates are shown in Figure 18a. In this case, the convergence behavior is similar to
the matched degree case shown in Figure 17. Since the degree of the slave patch is higher than the
master patch, the master interface knots are projected into the slave interface with enough repeated
knots to match the lower smoothness of the master interface. This results in nested spaces and
optimal rates are recovered. For degrees pm = ps + 1, nesting of spaces is not possible but, as can

17



be seen in Figure 18b, refining the dual basis twice recovers the optimal rates.
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Figure 8: Convergence rates for a square domain with two non-conforming patches, full Dirichlet
boundary conditions (see Figure 6a) and matched parameterizations.
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(b) Master/slave mesh ratio, m : s = 3 : 2

Figure 9: Convergence rates for a square domain with two non-conforming patches, full Dirichlet
boundary conditions (see Figure 6a) and matched parameterizations where the dual space is refined
n times, n = 0, 1.
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Figure 10: Convergence rates for a square domain with two non-conforming patches, Dirichlet-
Neumann boundary conditions (see Figure 6b), and matched parameterizations.
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Figure 11: Convergence rates for a square domain with two non-conforming patches, Dirichlet-
Neumann boundary conditions (see Figure 6b), matched parameterizations where the dual space is
refined n times, n = 0, 1.
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Figure 12: Convergence rates for a square domain with two non-conforming patches, Dirichlet-
Neumann boundary conditions (see Figure 6b) and mismatched parameterizations, master/slave
mesh ratio, m : s = 2 : 3.

10 -3 10 -2 10 -1 100

h

10 -11

10 -10

10 -9

10 -8

10 -7

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

ku
!

u
h
k L

2

3

4

5

B4ezier, p=2, re-ne=0

B4ezier, p=3, re-ne=0

B4ezier, p=4, re-ne=0

B4ezier, p=2, re-ne=1

B4ezier, p=3, re-ne=1

B4ezier, p=4, re-ne=1

B4ezier, p=2, re-ne=2

B4ezier, p=3, re-ne=2

B4ezier, p=4, re-ne=2

O(h3); O(h4); O(h5)

Figure 13: Convergence rates for a square domain with two non-conforming patches, Dirichlet-
Neumann boundary conditions (see Figure 6b) and mismatched parameterizations where the dual
space is refined n times, n = 0, 1, 2, master/slave mesh ratio, m : s = 2 : 3.
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Figure 14: Convergence rates for a square domain with two non-conforming patches, Dirichlet-
Neumann boundary conditions (see Figure 6b), mismatched parameterizations and degrees pm =
ps + 1, where the dual space is refined n times, n = 0, 1, 2.
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Figure 15: An annular domain composed of two quadratic nonconforming NURBS patches.
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(a) Master/slave mesh ratio, m : s = 2 : 3
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Figure 16: Convergence rates for an annular domain with two non-conforming NURBS patches,
Dirichlet-Neumann boundary conditions (see Figure 15) and matched parameterizations.
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Figure 17: Convergence rates for an annular domain with two non-conforming NURBS patches,
Dirichlet-Neumann boundary conditions (see Figure 15) and refined matched parameterizations.

27



10 -2 10 -1 100

h

10 -7

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

100

101

ku
!

u
h
k L

2

4

5

3

B4ezier, pm=2, ps = 3, re-ne=0

B4ezier, pm=3, ps = 4, re-ne=0

B4ezier, pm=4, ps = 5, re-ne=0

B4ezier, pm=2, ps = 3, re-ne=1

B4ezier, pm=3, ps = 4, re-ne=1

B4ezier, pm=4, ps = 5, re-ne=1

O(h3); O(h4); O(h5)

(a) Degree pair, pm = ps − 1

10 -2 10 -1 100

h

10 -8

10 -7

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

100

101

ku
!

u
h
k L

2

4

5

3

B4ezier, pm=3, ps = 2, re-ne=0

B4ezier, pm=4, ps = 3, re-ne=0

B4ezier, pm=5, ps = 4, re-ne=0

B4ezier, pm=3, ps = 2, re-ne=1

B4ezier, pm=4, ps = 3, re-ne=1

B4ezier, pm=5, ps = 4, re-ne=1

B4ezier, pm=3, ps = 2, re-ne=2

B4ezier, pm=4, ps = 3, re-ne=2

B4ezier, pm=5, ps = 4, re-ne=2

O(h3); O(h4); O(h5)

(b) Degree pair, pm = ps + 1

Figure 18: Convergence rates for an annular domain with two non-conforming NURBS patches,
Dirichlet-Neumann boundary conditions (see Figure 15), matched parameterizations and mis-
matched degrees, master/slave mesh ratio m : s = 3 : 2.
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6.3 Infinite elastic plate with a circular hole

Figure 19: A schematic for the infinite elastic plate with a circular hole benchmark.

We next simulate the classical infinite elastic plate with a circular hole benchmark problem. In
this case, we apply a constant traction in the x-direction at infinity. Due to symmetry, only one
quarter of the plate is modeled as shown in Figure 19, where Tx is the traction, R is the radius of
the hole, L is the length of each side of the plate, E is Young’s modulus, and ν is Poisson’s ratio.
An analytical solution to this problem can be found in [2] and is reproduced here for completeness

σrr(r, θ) =
Tx
2

(
1− R2

r2

)
+
Tx
2

(
1− 4

R2

r2
+ 3

R4

r4

)
cos2θ, (44)

σθθ(r, θ) =
Tx
2

(
1 +

R2

r2

)
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2

(
1 +

3

4

R4

r4

)
cos2θ, (45)

σrθ(r, θ) = −Tx
2

(
1 + 2

R2

r2
− 3

R4

r4

)
sin2θ. (46)

As shown in Figures 20a and b, we first decompose the geometry into two patches with matched
and mismatched parameterizations, respectively. The convergence rates of the stress component
σxx in the L2-norm are optimal for the global dual mortar method for all cases in Figure 21 and
23 due to the absence of crosspoints. For the matched parameterization case without refinement,
the Bézier dual mortar method only achieves optimal rate for p = 2, m : s = 2 : 3. With one
refinement of the dual basis, the proposed method recovers optimal rates for all cases as shown in
Figure 22. For mismatched parameterizations without refinement, the Bézier dual mortar method
exhibits similar reduced convergence rates as for the matched parameterization case as shown in
Figure 23. However, as shown in Figure 24a, after one refinement the proposed method recovers
the optimal rates for all degrees, m : s = 2 : 3, and refining the dual basis twice results in optimal
rates for p = 2, 3, m : s = 3 : 2, as shown in Figure 24b.

To assess the ability of the method to handle multiple patch coupling the geometry is decomposed
into three nonconforming NURBS patches with matched and mismatched parameterizations as
shown in Figures 25a and b, respectively. As shown in Figures 26a and 27a, the global dual mortar
method suffers from severely deteriorated convergence rates for p = 2, 3 and 4 for both matched
and mismatched parameterizations due to two types of crosspoints, i.e., the interface/Dirichlet
intersections and the interface/interface intersection in the middle. For matched parameterizations
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(b) Mismatched parameterizations

Figure 20: NURBS meshes for a quarter plate with a hole.

without refinement, the Bézier dual mortar method achieves optimal rate for p = 2, and slightly
deteriorated rate for p = 3 as shown in Figure 26a. Refining once recovers the optimal rates for
p = 3, 4 (see Figure 26b). For mismatched parameterizations, optimal rates are achieved for p = 2 by
refining the dual space once and for p = 3 by refining the dual space twice (see Figure 27b). Figure 28
shows plots of the stress component σxx for both matched and mismatched parameterizations for
p = 2. It can be seen that even for the coarse initial meshes shown in Figures 25a and b, for both
matched and mismatched parameterizations, the stress concentration in the circular cutout is very
close to the analytical solution σxx = 30, as shown in Figure 28a and Figure 28c.
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(b) Master/slave mesh ratio, m : s = 3 : 2

Figure 21: Stress convergence rates for a quarter plate with a circular hole decomposed into two
nonconforming NURBS patches with matched parameterizations (see Figure 20a).
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Figure 22: Stress convergence rates for a quarter plate with a circular hole decomposed into two
nonconforming NURBS patches with refined matched parameterizations (see Figure 20a).

32



10 -2 10 -1 100 101

h

10 -5

10 -4

10 -3

10 -2

10 -1

100

101

k<
x
x
!
<

h x
x
k L

2

2

3

4

Global, p=2

Global, p=3

Global, p=4

B4ezier, p=2, re-ne=0

B4ezier, p=3, re-ne=0

B4ezier, p=4, re-ne=0

O(h2); O(h3); O(h4)

(a) Master/slave mesh ratio, m : s = 2 : 3

10 -2 10 -1 100 101

h

10 -5

10 -4

10 -3

10 -2

10 -1

100

101

k<
x
x
!
<

h x
x
k L

2

2

3

4

Global, p=2

Global, p=3

Global, p=4

B4ezier, p=2, re-ne=0

B4ezier, p=3, re-ne=0

B4ezier, p=4, re-ne=0

O(h2); O(h3); O(h4)

(b) Master/slave mesh ratio, m : s = 3 : 2

Figure 23: Stress convergence rates for a quarter plate with a circular hole decomposed into two
nonconforming NURBS patches with mismatched parameterizations (see Figure 20b).
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Figure 24: Stress convergence rates for a quarter plate with a circular hole decomposed into two
nonconforming NURBS patches with refined mismatched parameterizations (see Figure 20b).
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Figure 25: NURBS meshes for a quarter plate with a hole.
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Figure 26: Stress convergence rates for a quarter plate with a circular hole decomposed into three
nonconforming NURBS patches with matched parameterizations (see Figure 25a).
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Figure 27: Stress convergence rates for a quarter plate with a circular hole decomposed into three
nonconforming NURBS patches with mismatched parameterizations (see Figure 25b).
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(a) Initial mesh shown in Figure 25a (b) Mesh after 2 uniform refinements on (a)

(c) Initial mesh shown in Figure 25b (d) Mesh after 2 uniform refinements on (c)

Figure 28: Stress σxx, p = 2, no refinement of the dual basis space.
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6.4 Weakly continuous geometry: Large deformations in two-dimensions

We now employ Bézier dual mortaring to build weakly continuous geometry as described in Section 5.
Since the weak continuity constraint is embedded into the geometric description, a standard finite
element code can be employed to process the weakly continuous basis in exactly the same manner
as a standard conforming basis. To demonstrate the effectiveness of the approach, we compare the
displacements computed on a weakly continuous mesh to those computed on a similar continuous
mesh for a large deformation, plane strain problem.

The initial geometry and the location of the interface are shown in Figure 29. For the weakly
continuous mesh, the discretization does not match at the interface between the two patches and
continuity is enforced weakly by building appropriately modified extraction operators. For the
continuous mesh, the interface is treated as a C0 interface. In both cases, the basis functions are
quadratic maximally smooth B-splines. A Bézier element representation of the coarsest weakly
continuous mesh is also shown in Figure 29. As can be seen, there is one additional element on the
right side of the interface in the vertical direction. As the mesh is refined, the size of the elements
on the left side of the interface is cut in half in each direction and the right side is refined so that
there is always one additional element in the vertical direction. The continuous meshes are refined
such that the element size is always the same as the element size on the left side of the weakly
continuous meshes for a given refinement level.

Interface

Ωm

Ωs

1

0.5 0.5

Figure 29: The geometry and Bézier mesh.

We compare the computed results for the three load cases with associated boundary conditions
that are shown in Figure 30. The deformation is governed by the strain energy density functional
that is given by

ψ = λ
(

1
4(J2 − 1)− 1

2 ln J
)

+ 1
2µ (tr [b]− 3− 2 lnJ) (47)

where λ and µ are the typical Lamé parameters with

λ =
Eν

(1 + ν)(1− 2ν)
(48)

µ =
E

2(1 + ν)
(49)
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for Young’s Modulus, E, and Poison’s ratio, ν. We use E = 30 × 109 and ν = 0.48 for the results
presented here. In addition,

J = |F| and b = FFT (50)

where F is the deformation gradient, and b is the left Cauchy-Green tensor.
The pressure boundary condition, p, is applied as a dead load in the reference configuration and is

increased in twenty equal load increments to a maximum value of 100×109. At each load increment,
the nonlinear problem is solved using a Newton-Raphson scheme with convergence satisfied when
the residual is reduced by a factor of 108.

p
0.25 0.25

p
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ry
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0.
25
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25

Case 1 Case 2 Case 3

Figure 30: Load cases

The results of the computations are shown in Figures 31 through 33. Each figure shows the
unscaled deformation at the final load increment. On the left, the color scale indicates the magnitude
of the displacement. On the right, each patch is shown as a distinct color so that the deformation
of the interface between the two patches can clearly be seen. In all cases, the deformation of the
interface is severe, but there is nothing in the displacement plot that indicates the presence of the
weak interface.

To quantify the accuracy of the weak geometry approach we compare the displacements, uh,w,
computed on the weakly continuous mesh to the displacements, uh,c, computed on the continuous
mesh. We define the relative error, er, to be the L2-norm of the difference between the two considered

Figure 31: Vertical displacement and deformed configuration - Case 1.
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Figure 32: Vertical displacement and deformed configuration - Case 2.

Figure 33: Horizontal displacement and deformed configuration - Case 3.
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displacements, i.e

er = ‖uh,w − uh,c‖L2 . (51)

Using the triangle inequality,

‖uh,w − u‖L2 ≤ ‖uh,w − uh,c‖L2 + ‖uh,c − u‖L2 , (52)

we see that the absolute error of the solution computed on the weakly continuous mesh case is
bounded by the sum of the relative error and the absolute error of the solution computed on
the continuous mesh case. Now, assuming that the solution computed on the continuous mesh
case converges optimally, by (52), if the relative error converges optimally then we know that the
absolute error of the solution computed on the weakly continuous mesh case also must converge
optimally. The convergence rates of the relative error of the last load step are plotted in Figure 34
for the three load cases. This figure clearly shows that the convergence rate of the relative error are
cubic, which is the optimal rate for quadratic basis functions.
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Figure 34: Convergence rates of the L2-relative error of the last load step for the three large
deformation load cases.

7 Conclusions

We have introduced a new approach for the coupling of non-conforming higher-order smooth spline
patches which we call the isogeometric Bézier dual mortar method. The construction of the un-
derlying dual spline basis is based on Bézier extraction and projection and is applicable to any
spline description which has a Bézier representation. The dual basis is refineable and the associated
mortaring strategy preserves the sparsity of the stiffness matrix. The accuracy of the coupling can
be adaptively controlled by employing a dual basis refinement scheme which can be used to recover
optimal convergence rates without adding any additional degrees-of-freedom to the global system.
As a particular application of Bézier dual mortaring, we introduced weakly continuous geometry,
where the weak continuity constraint is built into properly modified extraction operators. This
allows for the use of weakly coupled multi-patch geometry in design and as a basis for standard
finite element frameworks which do not employ any mortaring algorithms.

We applied the isogeometric Bézier dual mortar method to standard linear and nonlinear elastic
test cases and B-spline and NURBS geometries. All tests show that the isogeometric Bézier dual

42



mortar method is robust and accurate, works for arbitrary master/slave pairings, and arbitrary
parameterizations.
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A A derivation of the weakly continuous extraction operator for
element e21 from Figure 3.

For the example shown in Figure 3, the basis relation matrix GN̄r,Nm defined by (37) and the
localized counterpart Ge

N̄r,Nm for the interface of element e21 are

GN̄r,Nm =


1 1

3 0 0 0 0

0 2
3

2
3

1
3 0 0

0 0 1
3

2
3

2
3 0

0 0 0 0 1
3 1


T

and Ge
N̄r,Nm =


1
3

2
3 0

0 2
3

1
3

0 1
3

2
3

 . (53)

The standard Bézier extraction operator Re,r
ξ1

and the basis transformation matrix M are

Re,r
ξ1

=


1
3 0 0

2
3 1 1

2

0 0 1
2

 and M =


1 0 0

1
2

1
2 0

1
4

1
2

1
4

 , (54)

and the weakly continuous one-dimensional interface element extraction operator R̃e
ξ1

for element
e21 is

R̃e
ξ1 = (Ge

N̄r,Nm)TRe,r
ξ1

M−T =


1
9 −1

9
1
9

2
3

2
3 0

2
9

4
9

8
9

 . (55)

The two standard one-dimensional Bézier extraction operators for the original slave patch element
e2 are

Re
ξ1 =


1
2 0 0

1
2 1 1

2

0 0 1
2

 and Re
ξ2 =


1
2 0 0

1
2 1 0

0 0 1

 . (56)

As shown in Figure 3, the interior basis functions of element e21 are identical to those of element

e2, and only the interface basis functions are replaced by the refined interface basis. We decompose

Re
ξ2

into two submatrices R1 and R2 such that

Re
ξ2 =

R1

R2

 =


1
2 0 0

1
2 1 0

0 0 1

 , (57)

where R1 is related to the interior basis functions and R2 is related to the interface basis functions.
Then, the weakly continuous patch element extraction operator R̃e for element e21 can be computed
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as follows:

R̃e =

[
R1 ⊗Re

ξ1

R2 ⊗ R̃e
ξ1

]
=


1
2Re

ξ1
0 0

1
2Re

ξ1
Re
ξ1

0

0 0 R̃e
ξ1

 =



1
4 0 0 0 0 0 0 0 0

1
4

1
2

1
4 0 0 0 0 0 0

0 0 1
4 0 0 0 0 0 0

1
4 0 0 1

2 0 0 0 0 0

1
4

1
2

1
4

1
2 1 1

2 0 0 0

0 0 1
4 0 0 1

2 0 0 0

0 0 0 0 0 0 1
9 −1

9
1
9

0 0 0 0 0 0 2
3

2
3 0

0 0 0 0 0 0 2
9

4
9

8
9



. (58)

Note that the only difference between the weakly continuous element extraction operator and the
standard element extraction operator is that the last three rows are modified. These rows correspond
to interface basis functions.
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