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Abstract

We introduce Bézier projection as an element-based local projection methodology for B-splines, NURBS,
and T-splines. This new approach relies on the concept of Bézier extraction and an associated operation
introduced here, spline reconstruction, enabling the use of Bézier projection in standard finite element
codes. Bézier projection exhibits provably optimal convergence and yields projections that are virtually
indistinguishable from global L2 projection. Bézier projection is used to develop a unified framework for
spline operations including cell subdivision and merging, degree elevation and reduction, basis roughening
and smoothing, and spline reparameterization. In fact, Bézier projection provides a quadrature-free approach
to refinement and coarsening of splines. In this sense, Bézier projection provides the fundamental building
block for hpkr-adaptivity in isogeometric analysis.

Keywords: Bézier extraction, spline reconstruction, isogeometric analysis, local refinement and coarsening,
local projection, quasi-interpolation

1. Introduction

Projection is a ubiquitous operation in numerical analysis and scientific computing. Consequently, there
is a great need to develop projection technologies that are cheap, accurate, and reliable. This is particularly
true in isogeometric analysis where the spline basis may not be interpolatory. In this paper we present
Bézier projection, a methodology for local projection (i.e., quasi-interpolation) onto and between spline
spaces. Bézier projection converges optimally, is virtually indistinguishable from global projection (which
requires the solution of a global system of equations), and provides a unified framework for quadrature-
free refinement and coarsening of B-splines, NURBS, and T-splines. In particular Bézier projection can
accommodate

• (Cell) Subdivision or h-refinement,

• (Cell) Merging or h-coarsening,

• (Degree) Elevation or p-refinement,

• (Degree) Reduction or p-coarsening,

• (Basis) Roughening or k-refinement,

• (Basis) Smoothing or k-coarsening,
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• Reparameterization or r-adaptivity.

These operations can be combined in a straightforward fashion to produce isogeometric hpkr-adaptivity. Note
that only h-refinement of T-splines has appeared previously in the literature [84, 81]. Bézier projection is an
extension of Bézier extraction [80, 12] in that it is derived entirely in terms of Bézier elements and element
extraction operators. This means it can be applied to existing finite element frameworks in straightforward
fashion as an element-level technology. Additionally, we formulate Bézier projection in terms of Kronecker
products facilitating its application in high-dimensional settings.

Potential applications of Bézier projection are varied and include:

• Curve and surface fitting,

• Mesh adaptivity,

• Enforcement of boundary conditions,

• Solution methods with nonconforming meshes,

• Multi-level solver technology,

• Data compression for image, signal, and data processing.

In the following, we briefly give a basic background on the building blocks of our approach, namely
isogeometric analysis, NURBS and T-splines, and quasi-interpolation. We additionally present a summary
of our paper.

1.1. Isogeometric analysis
Isogeometric analysis [51, 23] is a generalization of finite element analysis which improves the link between

geometric design and analysis. The isogeometric paradigm is simple: the smooth spline basis used to define
the geometry is used as the basis for analysis. As a result, exact geometry is introduced into the analysis.
The smooth basis can be leveraged by the analysis [39, 52, 24] leading to innovative approaches to model
design [21, 95, 64], analysis [76, 82, 78, 8], optimization [94], and adaptivity [5, 36, 83, 83].

Many of the early isogeometric developments were restricted to NURBS but the use of T-splines as an
isogeometric basis has gained widespread attention across a number of application areas [5, 80, 81, 91, 90,
13, 8, 76, 82, 86, 32, 49, 6, 16, 45]. Particular focus has been placed on the use of T-spline local refinement
in an analysis context [79, 81, 13, 90, 91].

1.2. B-splines, NURBS, T-splines, and more
Bézier curves and surfaces [30, 10, 11], B-splines [27, 74], and NURBS [92, 71, 72] have become the

standard for computer graphics and computer-aided design [71]. This ubiquity has driven the development
of many spline-based algorithms. Important examples include knot insertion and knot removal [20, 46, 72, 37]
to subdivide and merge cells in the mesh as well as modify the smoothness of the spline functions and degree
elevation and reduction [73, 50, 72] to modify the polynomial degree of the basis.

T-splines, introduced in the CAD community [85], are a generalization of non-uniform rational B-splines
(NURBS) which address fundamental limitations in NURBS-based design. For example, a T-spline can
model a complicated design as a single, watertight geometry and are also locally refineable [84, 81]. Since
their advent they have emerged as an important technology across multiple disciplines and can be found in
several major commercial CAD products [1, 2]. Recent developments include analysis-suitable T-splines [63,
81, 7, 26, 62], and their hierarchical extension [38].

We note that while NURBS and T-splines have become standard technology in IGA there exist a growing
number of alternative spline technologies which have been proposed as a basis for IGA. These are not
considered in this paper however it should be noted that Bézier projection can be used in all of these
cases for which Bézier extraction can be defined. Hierarchical B-splines [42, 93, 77, 43, 57, 44, 9] are
a multi-level extension of B-splines. B-spline forests [83] are a generalization of hierarchical B-splines to
surfaces and volumes of arbitrary topological genus. Subdivision surfaces generalize smooth B-splines to
arbitrary topology [18, 65, 48, 19, 17]. Splines posed over triangulations have been pursued in the context
of piecewise quadratic C1 Powell-Sabin splines [88, 87], and C0 Bézier triangles [53]. Polynomial splines
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over hierarchical T-meshes (PHT-splines) [31, 60, 61, 59], modified T-splines [56], and locally refined splines
(LR-splines) [34, 15] are closely related to T-splines with varying levels of smoothness and approaches to
local refinement. Generalized B-splines [67, 22] and T-splines [14] enhance a piecewise polynomial spline
basis by including non-polynomial functions, typically trigonometric or hyperbolic functions.

1.3. Quasi-interpolation and local least-squares projection
Quasi-interpolation methods were originally developed as an efficient means to obtain spline representa-

tions [29, 28, 58, 3, 75, 22]. Bézier projection can be viewed as an extension or generalization of the integral
quasi-interpolants presented by Sablonnière [75]. Interested readers are referred to Sablonnière [75] for an
overview and classification of quasi-interpolation methods.

The technique for projection onto a spline basis that is most closely related to our work is the local least-
squares projection method of Govindjee et al. [47] in which local projections onto the spline basis over an
element are computed and then averaged to obtain a global control value. The averaging step in the method
of Govindjee et al. was not presented as an average, but rather as the application of the pseudoinverse of the
assembly operator to the control values computed for the elements. It can be shown that this is equivalent
to a simple average of the local values and hence the local least-squares projection method can be viewed as
a special case of Bézier projection.

1.4. Summary of the paper
In Section 2 required notation and conventions are established. The Bernstein basis is defined along

with expressions to relate Bernstein basis polynomials over different intervals. Expressions for the Gramian
matrix of the Bernstein basis and its inverse are also given. B-splines and NURBS are defined and an
informal presentation of two-dimensional T-splines is given. Bézier extraction is presented and the element
reconstruction operator is defined as the inverse of the element extraction operator.

Section 3 introduces Bézier projection as a localized projection operation related to quasi-interpolation.
A proof of the optimal convergence of the method is given in Appendix A. The Bézier projection method
has three distinct steps.

1. A function is projected onto the Bernstein basis over each element in the mesh.
2. An element reconstruction operator is used to compute the representation of the Bézier curve, surface,

or volume in terms of the spline basis functions over each element.
3. The local spline coefficients are averaged to obtain the coefficients or control values of the global basis.

Several applications of the method are given including lifting of the normal field of a spline surface and
projection between nonconforming meshes.

Section 4 focuses on Bézier projection between spline spaces. The element extraction operator and the
spline element reconstruction operator are used to develop quadrature-free algorithms for knot insertion,
knot removal, degree elevation, degree reduction, and reparameterization. The Bézier projection algorithms
developed are summarized in Table 1. Simple one-dimensional examples are given for all spline operations
in the associated sections.
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Table 1: Summary of Bézier projection algorithms developed in this paper.

Operation Algorithmic Description

General projection
B-splines, NURBS, Algorithm 3.3

and T-splines

degree elevation
p-refinement

B-splines/NURBS Algorithm 4.4

T-splines Algorithm 4.6

degree reduction
p-coarsening

B-splines/NURBS Algorithm 4.5

T-splines Algorithm 4.7

knot insertion
basis roughening
k-refinement

B-splines/NURBS Algorithm 4.9

T-splines Algorithm 4.11

knot removal
basis smoothing
k-coarsening

B-splines/NURBS Algorithm 4.10

T-splines Algorithm 4.12

knot insertion
cell subdivision
h-refinement

B-splines/NURBS Algorithm 4.13

T-splines Algorithm 4.15

knot removal
cell merging
h-coarsening

B-splines/NURBS Algorithm 4.14

T-splines Algorithm 4.16

reparameterization
r-refinement

B-splines, NURBS, Algorithm 4.17

and T-splines
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2. Notation and preliminaries

2.1. Univariate Bernstein basis
The univariate Bernstein basis functions are defined as

Bpi (ξ) =
1

2p

(
p

i− 1

)
(1− ξ)p−(i−1)(1 + ξ)i−1, (1)

where ξ ∈ [−1, 1] and the binomial coefficient
(
p
i−1

)
= p!

(i−1)!(p+1−i)! , 1 ≤ i ≤ p+ 1. We choose to define the
Bernstein basis over the biunit interval to facilitate Gaussian quadrature in finite element analysis rather
than use the CAGD convention where the Bernstein polynomials are defined over the unit interval [0, 1].
The univariate Bernstein basis has the following properties:

• Partition of unity .
p+1∑
i=1

Bpi (ξ) = 1 ∀ξ ∈ [−1, 1]

• Pointwise nonnegativity .
Bpi (ξ) ≥ 0 ∀ξ ∈ [−1, 1]

• Endpoint interpolation.
Bp1(−1) = Bpp+1(1) = 1

• Symmetry .
Bpi (ξ) = Bp+1−i,p(−ξ) ∀ξ ∈ [−1, 1]

The Bernstein basis functions for polynomial degrees p = 1, 2, 3 are shown in Fig. 1. It is often useful to
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Figure 1: The Bernstein basis for polynomial degrees p = 1, 2, 3.

define a vector of basis functions

Bp(ξ) =


Bp1(ξ)
Bp2(ξ)

...
Bpp+1(ξ)

 . (2)

The degree superscript is suppressed when unnecessary.

Lemma 2.1. The Bernstein polynomials of degree p are linearly independent and form a complete basis for
the polynomials of degree p over the biunit interval.

We denote the space of functions over the biunit interval spanned by the Bernstein basis of degree p by
Bp. A useful review of Bernstein polynomials and their properties is provided by Farouki [40].
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2.2. Multivariate Bernstein basis
We define a multivariate Bernstein basis over the box of dimension dp, [−1, 1]dp , by the tensor product.

The polynomial degree may be different in each direction and so we define the vector of degrees p = {p`}dp`=1.
The vector of multivariate Bernstein basis functions is defined by the Kronecker product

Bp = Bpdp (ξdp)⊗ · · · ⊗Bp1(ξ1). (3)

Thus, there are nb =
∏dp
`=1(p` + 1) basis functions in the vector. All of the properties of the univariate

Bernstein basis are inherited by the multivariate Bernstein basis. For two dimensions, the Bernstein basis
functions can be indexed by the map

a (i, j) = (p1 + 1)(j − 1) + i (4)

so that
Bp
a(i,j)(ξ1, ξ2) = Bp1i (ξ1)Bp2j (ξ2), (5)

where p = {p1, p2}. For the trivariate case we have that

Bp
a(i,j,k)(ξ) = Bp1i (ξ1)Bp2j (ξ2)Bp3k (ξ3), (6)

where p = {p1, p2, p3} with the map

a (i, j, k) = (p1 + 1)(p2 + 1)(k − 1) + (p1 + 1)(j − 1) + i. (7)

2.2.1. Relations between Bernstein polynomials over different intervals
The Bernstein polynomials over the interval [a, b] are

Bpi (t) =

(
p

i

)
(b− t)p−(i−1)(t− a)i−1

(b− a)p
. (8)

Given another interval [ã, b̃], the Bernstein polynomials are

B̃pi (t) =

(
p

i

)
(b̃− t)p−(i−1)(t− ã)i−1

(b̃− ã)p
. (9)

A polynomial function f of degree p can be represented by a linear combination of the Bernstein polynomials
over [a, b] or by a combination of the Bernstein polynomials over [ã, b̃]

f(t) =

p+1∑
i=1

ciB
p
i (t) =

p+1∑
i=1

c̃iB̃
p
i (t). (10)

As shown by Farouki and Neff [41], the coefficient vectors c = {ci}p+1
i=1 and c̃ = {c̃i}p+1

i=1 can be related by
the transformation matrix A

c̃ = Ac (11)

where the entries of A are given by

Ajk =

min(j,k)∑
i=max(1,j+k−p+1)

Bj−1
i (b̃)Bp−j−1

k−i (ã) for j, k = 1, 2, . . . , p+ 1. (12)

This can be extended to multiple dimensions by a tensor product. The elements of the inverse of A are given
by

[A−1]jk =

min(j,k)∑
i=max(1,j+k−p+1)

B̃j−1
i (b)B̃p−j−1

k−i (a) for j, k = 1, 2, . . . , p+ 1. (13)

The inverse matrix provides a relationship between the basis functions over each interval

B̃
p

= A−TBp. (14)

Both Eqs. (12) and (13) are defined using one-based indexing for both the matrix entries and the Bernstein
basis as opposed to the zero-based indexing used by Farouki and Neff [41].
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2.2.2. The Gramian of the Bernstein basis and its inverse
When computing the projection of an arbitrary function onto the Bernstein polynomials, an expression

for the Gramian matrix Gp for the basis of degree p is required. The entries in the matrix are

Gpjk =

∫ 1

−1

Bpj (ξ)Bpk(ξ)dξ for j, k = 1, 2, . . . , p+ 1. (15)

Expressions for products and integrals of the Bernstein polynomials given by Doha et al. [33], Farouki [40]
permit Eq. (15) to be written in closed form as

Gpjk =
2

2p+ 1

(
2p

j + k − 2

)−1(
p

j − 1

)(
p

k − 1

)
. (16)

The polynomial degree p will generally be suppressed. The Gramian matrix for a multivariate Bernstein basis
of dimension dp and with the vector of polynomial degrees p =

{
p1, . . . , pdp

}
is obtained from a Kronecker

product
Gp = Gpdp ⊗ · · · ⊗Gp1 . (17)

An expression for the inverse of the Gramian of the Bernstein basis can be obtained by considering the
Bernstein-Bézier representation of the dual basis given by Jüttler [55]. The Bézier coefficients of the dual
basis are precisely the entries in the inverse of the Gramian and so the expression for the dual basis can be
used to obtain

[(Gp)−1]jk =
(−1)j+k

2

[(
p

j − 1

)(
p

k − 1

)]−1 min(j,k)∑
i=1

(2i−1)

(
p− i+ 1

p− j + 1

)(
p− i+ 1

p− k + 1

)(
p+ i

p− j + 1

)(
p+ i

p− k + 1

)
(18)

after modification to use one-based indexing and the Bernstein basis over the biunit interval. The inverse of
a Kronecker product of matrices is given by the Kronecker product of the inverses and so Eq. (18) can be
used to compute the inverse of a multivariate Gramian matrix

(Gp)−1 = (Gpdp )−1 ⊗ · · · ⊗ (Gp1)−1. (19)

2.3. Univariate spline basis
A univariate spline is defined by the polynomial degree of the spline p and the knot vector G, a set of

non-decreasing parametric coordinates G = {σi}n+p+1
i=1 , σi ≤ σi+1 where n is the number of spline basis

functions. We require that the knot vector be open, that is the first p + 1 knots are equal σ1 = · · · = σp+1

and the last p+ 1 knots are equal σn+1 = · · · = σn+p+1. The Ath spline basis function over the knot vector
is defined using the Cox-de Boor recursion formula:

N0
A(s) =

{
1 σA ≤ s < σA

0 otherwise.
(20)

Np
A(s) =

s− σA
σA+p − σA

Np−1
A (s) +

σA+p+1 − s
σA+p+1 − σA+1

Np−1
A+1(s). (21)

It is also possible to associate a local knot vector with each spline basis function. The local knot vector
gA ⊂ G is the set of p + 2 knots chosen contiguously from the knot vector G that defines the function NA.
Application of the Cox-de Boor recursion formula to the local knot vector gA produces the basis function
NA and so it is also possible to index a basis function by its local knot vector:

NA(s) = NgA(s). (22)

The B-spline basis enjoys the following properties:
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• Partition of unity.
n∑

A=1

Np
A(s) = 1, ∀s ∈ [σ1, σn+p+1]

• Pointwise nonnegativity.

Np
A(s) ≥ 0, j = 1, . . . , n, ∀s ∈ [σ1, σn+p+1]

• Global linear independence.

n∑
j=1

cjN
p
A(s) = 0⇔ ci = 0, i = 1, . . . , n, ∀s ∈ [σ1, σn+p+1]

• Local linear independence. Given an open set Ω̂′ ⊆ Ω̂ the B-spline basis functions having some support
in Ω̂′ are linearly independent on Ω̂′.

• Compact support.
{s ∈ [σ1, σn+p+1] : Np

A(s) > 0} ⊂ [σi, σi+p+1]

• Control of continuity. If σi has multiplicity k (i.e., σi = σi+1 = . . . = σi+k−1), then the basis functions
are Cp−k-continuous at σi. When k = p, the basis is C0 and interpolatory at that location.

It is interesting to observe that the Bernstein basis defined previously is the set of spline functions given by
the knot vector

{−1, . . . ,−1︸ ︷︷ ︸
p+1

, 1, . . . , 1︸ ︷︷ ︸
p+1

}. (23)

As with the Bernstein basis, it is possible to define a vector of basis functions

Np(s) = {Np
A(s)}nA=1 . (24)

Note that the number of basis functions is p + 1 less than the number of knots in the knot vector G. The
space of functions spanned by the functions in N(s) is called a spline space.

A spline curve of dimension ds is a function mapping R to Rds . The curve x(s) is defined by a set of ds
dimensional control points PA as

x(s) =

n∑
A=1

PANA(s). (25)

Due to the variation diminishing property of the spline basis, the curve will generally only interpolate the
control points at the ends of the curve or at locations where the spline basis is C0. An alternate form of
Eq. (25) can be obtained by defining the vector of control points P = {PA}nA=1 so that

x(s) = PTN(s). (26)

The vector of control points P can be interpreted as a matrix of dimension n× ds.

2.4. Rational univariate splines
The spline basis defined in the previous section provides a flexible means to represent curves, however

certain curves of interest such as circular arcs cannot be represented by a polynomial basis. A rational spline
basis can be used to remedy this deficiency. The rational basis is defined by associating a weight with each
basis function NA and introducing the weight function

w(s) =

n∑
A=1

wANA(s) (27)
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The rational basis functions are then defined as

RA(s) =
wANA(s)

w(s)
(28)

and a rational curve is defined as

x(s) =

n∑
A=1

PARA(s). (29)

A rational curve of this type is commonly referred to as a Non-Uniform Rational B-Spline (NURBS) curve.
It is customary to represent the rational curve by a polynomial curve in a ds+1 dimensional space known as a
projective space. The control points PA are converted to so-called homogeneous form P̃A = {wAPT

A, wA}T.
This definition permits the definition of the ds + 1-dimensional polynomial curve

x̃(s) =

n∑
A=1

P̃ANA(s). (30)

This construction permits the application of standard B-spline algorithms to rational spline curves. Therefore
all of the algorithms in this paper can be applied to rational splines.

2.5. Multivariate spline basis
Just as the multivariate Bernstein basis is defined by a tensor product of the univariate basis, a multi-

variate spline basis is defined from a tensor product of univariate spline bases. The univariate spline basis
in each parametric direction are defined by a polynomial degree pi and a knot vector Gi. The number of
parametric dimensions is denoted by dp. The total number of basis functions in the spline basis is given by

n =

dp∏
i=1

ni (31)

where ni is the number of univariate spline basis functions in the ith parametric dimension.
For two dimensions, we define the map A(i, j) = n1(j − 1) + i and the Ath basis function is then given

by
Np
A(i,j)(s, t) = Np1

i (s)Np2
j (t). (32)

Similarly, for three dimensions, A(i, j, k) = n1n2(k − 1) + n1(j − 1) + i and the Ath basis function is given
by

Np
A(i,j,k)(s, t, u) = Np1

i (s)Np2
j (t)Np3

k (u). (33)

It is also possible to define a single basis function in terms of the local knot vectors that define the function
in each parametric direction:

Np
A(i,j)(s, t) = Ngi,gj (s, t) = Ngi(s)Ngj (t). (34)

Here gi is the ith set of p + 1 contiguous entries in the knot vector G1 that defines the spline in the first
parametric dimension and gj is similarly chosen from G2. A vector of spline basis functions can be define by
a Kronecker product of the vectors of univariate basis functions:

Np(s, t, u) = Np3(u)⊗Np2(t)⊗Np1(s) (35)

A multivariate rational spline basis can be defined in the same manner as the univariate case.
Spline surfaces and volumes can be constructed by associating a control point with each basis function.

The geometric map is defined as the sum of the product of control points and spline basis functions:

x(s) =

n∑
A=1

PANA(s) (36)
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where x = {xi}dsi=1 is a spatial position vector and s = {qi}dpi=1 is a parametric position vector. The geometric
map is given in matrix form as

x(s) = PTNp(s) (37)

where P is the n× ds vector of control points.
The geometric map is a bijective map from the parametric domain Ω̂ ⊂ Rdp , which defines the spline, to

the physical or spatial domain Ω ⊂ Rds . Due to the convex hull property of splines, the spatial domain is
contained in the convex hull of the control points. The geometric map defines the spline surface or volume in
physical space and parameterizes it by the parametric coordinates. A rational spline basis can be constructed
from these ideas in a manner similar to what is described for the one-dimensional case in Section 2.4.

2.6. T-splines
T-splines represent a generalization of B-splines and NURBS. Whereas a B-spline is constructed from a

tensor product of univariate splines, a T-spline permits meshes with hanging nodes or T-junctions. T-splines
contain standard B-splines and NURBS as special cases. The theory of T-splines is rich and dynamic. We do
not delve deeply into T-spline theory in this paper and instead refer the interested reader to Sederberg et al.
[84], Scott et al. [80, 81], Li and Scott [62] and the references contained therein. We limit our discussion to
two-dimensional T-splines of arbitrary degree.

2.6.1. The T-mesh
Given polynomial degrees, p1 and p2, and two index vectors, Ii = {1, 2, . . . , ni + pi + 1}, i = 1, 2, we

define the index domain of the T-mesh as Ω̄ = [1, n1 + p1 + 1]⊗ [1, n2 + p2 + 1]. We associate a knot vector
Gi =

{
σi1 ≤ σi2 ≤ · · · ≤ σini+pi+1

}
, i = 1, 2, with the corresponding index vector Ii. Any repeated entries in

Gi are referred to as knots of multiplicity m. We require that the first and last knots have multiplicity pi+1,
this is commonly called an open knot vector. We also require that no knot in Gi have multiplicity greater
than pi + 1. It should be noted that repeated knots have unique indices. We define the parametric domain
of the T-mesh as Ω̂ = [σ1

1 , σ
1
n1+p1+1]⊗ [σ2

1 , σ
2
n2+p2+1].

A T-mesh T is a rectangular partition of the index domain such that all vertices have integer coordinates
taken from I1 and I2, all cells are rectangular, non-overlapping, and open, and all edges are horizontal or
vertical line segments which do not intersect any cell. Because there are corresponding parametric values
assigned to each vertex in the index space, the T-mesh can be mapped to the parametric domain. Cells in
the index domain that are bounded by repeated knot values are mapped to cells of zero parametric area in
the parametric domain. An example T-mesh is shown in Fig. 2. Cells that are bounded by repeated knots
in at least one dimension have zero parametric area and are shown in gray in the figure. We say that two

Figure 2: An example T-mesh. Vertices are marked with open circles and the vertices corresponding to T-junctions are marked
with orange circles. Cells with zero parametric area are gray.

T-meshes Ta and Tb are nested if Tb can be created by adding vertices and edges to Ta. We use the notation
Ta ⊆ Tb to indicate this relationship.
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2.6.2. T-spline basis functions
The T-spline basis functions are constructed from the T-mesh and the knot vectors. Note that we use the

term basis function throughout this section although there is no guarantee that the set of blending functions
inferred from a T-mesh form a basis for the space. This question is resolved by analysis-suitable T-splines.
A basis function is anchored to unique T-mesh entities (i.e., vertices, edges, cells) as follows:

• If p1 and p2 are odd then the anchors are all the vertices in the T-mesh with indices greater than ip1
and less than n1 + 1 in the first dimension and greater than p2 and less than n2 + 1 in the second
dimension.

• If p1 and p2 are even then the anchors are all the cells in the T-mesh bounded by vertices with indices
greater than p1 and less than n1 + 1 in the first dimension and greater than p2 and less than n2 + 1 in
the second dimension.

• If p1 is even and p2 is odd then the anchors are all the horizontal edges in the T-mesh bounded by
vertices with indices greater than p1 and less than n1 + 1 in the first dimension and greater than p2

and less than n2 + 1 in the second dimension.

• If p1 is odd and p2 is even then the anchors are all the vertical edges in the T-mesh bounded by vertices
with indices greater than p1 and less than n1 + 1 in the first dimension and greater than p2 and less
than n2 + 1 in the second dimension.

The function anchors for these four cases are illustrated in Fig. 3. We assume that the anchors can be
enumerated and refer to each anchor by its index A.

The basis functions associated with each anchor are defined by constructing a local knot vector in each
parametric direction. The function anchor is indicated by its index A and so the local knot vector associated
with A in the ith parametric direction is denoted by gA,i. The algorithm for constructing the local knot
vector in the ith parametric direction associated with the Ath anchor is given here with examples of its
application following.

Algorithm 2.2. Construction of the local knot vector in the ith parametric direction for the Ath function
anchor from the T-mesh.

1. Find the line that lies in the ith parametric direction and that passes through the center of the function
anchor. We refer to this as the anchor line associated with the ith parametric direction. This line is
used to find the indices that define the local knot vector.

2. Determine the width hi of the anchor of interest in the direction perpendicular to the anchor line and
thicken the line so that it has width hi and is centered on the anchor line. If the polynomial degree pi
is odd in all directions then hi = 0 and so the anchor line and thickened anchor line coincide.

3. Find the indices of vertices or perpendicular edges in the T-mesh whose intersection with the thickened
anchor line is nonempty and of length hi.

4. The local index vector iA,i is the ordered set of indices formed by collecting the closest d(pi + 1)/2e
indices found in the previous step on either side of the anchor A. If pi is odd, then the index of the
edge or vertex associated with the anchor is added also to the local index vector. The local index vector
iA,i is of length pi + 2.

5. The local knot vector gA,i is formed by collecting the knot entries in the global knot vector Gi given by
the indices in the local index vector iA,i.

By carrying this process out in each parametric direction, a set of local knot vectors {gA,1, gA,2} associated
with the anchor A can be obtained. The basis function associated with the anchor A is then defined in the
same manner as the local spline basis function for B-splines indexed by local knot vectors:

NA(s, t) = NgA,1,gA,2
(s, t) = NgA,1

(s)NgA,2
(t) (38)

where the functions NgA,i
are obtained by applying the Cox-de Boor formula to the local knot vectors gA,i.

The process for constructing local knot vectors is illustrated in Fig. 4 for four cases: p = {2, 2}, p = {3, 2},
p = {2, 3}, and p = {3, 3}.
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(a) p1 = 2, p2 = 2 anchors are faces. (b) p1 = 3, p2 = 2 anchors are vertical edges.

(c) p1 = 2, p2 = 3 anchors are horizontal edges. (d) p1 = 3, p2 = 3 anchors are vertices.

Figure 3: The set of anchors for varying values of p1 and p2. In this picture blue represents the anchor locations, gray is the
boundary cells with zero parametric area, and the orange vertices are T-junctions.
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T-splines with even degree in both directions have cell faces as anchors; thus for the p = {2, 2} case
shown in part (a), the function anchor is marked by a large, light blue box covering the cell face. We use
the global knot vectors

G1 = {0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 7, 7} (39)

and
G2 = {0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 7, 7} . (40)

The anchor line used to construct the horizontal knot vector is shown in dark blue and the anchor line used
to construct the vertical knot vector is shown in green. Because the spline has even polynomial degree, the
thickened anchor line is shown in both directions. The indices that contribute to the local knot vector are
marked with a ×. The indices used to construct the horizontal local index vector for the marked function
are iA,1 = {3, 4, 8, 10} and so the local knot vector for the function is gA,1 = {0, 1, 5, 7}. The indices 5 and
7 were skipped because there are no edges associated with those indices that intersect with the horizontal
anchor line used to determine the local knot vector. Note that the index 9 was skipped because the edges
that intersect the horizontal line do not span the thickened anchor line due to the missing edge between
(9, 6) and (9, 7). Similarly, the vertical local index vector is iA,2 = {2, 3, 7, 9} and so the vertical local knot
vector for the function is gA,2 = {0, 0, 4, 6}.

The mixed degree case p = {3, 2} is shown in part (b). We now use the global knot vectors

G1 = {0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 7, 7, 7} (41)

and
G2 = {0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 7, 7} . (42)

Here the function anchor is a vertical edge and so only the horizontal anchor line is thickened (shown in
dark blue in the figure). The vertical anchor line is shown as a dashed green line. The horizontal indices
that contribute to the local index vector are iA,1 = {5, 9, 11, 12} and so the horizontal local knot vector
is gA,1 = {1, 4, 5, 7, 7}. The index 7 is skipped because it does not have edges that span the thickened
anchor line at the intersection. It is not necessary to check the span in the vertical direction because the
anchor has no width. The vertical index vector is iA,2 = {6, 7, 9, 10} and the vertical local knot vector is
gA,2 = {3, 4, 6, 7}.

The opposite mixed degree case p = {2, 3} is shown in part (c). The global knot vectors are now

G1 = {0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 7, 7} (43)

and
G2 = {0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 7, 7, 7} . (44)

The function anchors are now horizontal edges and so only the vertical anchor line must be thickened. The
indices for the horizontal local index vector are iA,1 = {3, 4, 7, 8} and the knot vector is gA,1 = {0, 1, 4, 5}.
The horizontal anchor line has no width perpendicular to the horizontal direction and so only intersections
must be checked. The indices for the vertical local index vector are iA,2 = {3, 4, 8, 9, 10}; here all of the edges
intersected span the anchor. The vertical local knot vector is gA,2 = {0, 0, 4, 5, 6}.

The odd degree case p = {3, 3} is shown in part (d). We choose the global knot vectors

G1 = {0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 7, 7, 7} (45)

and
G2 = {0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 7, 7, 7} . (46)

For T-splines with odd degree in both directions, the anchors are vertices, the anchor lines are not thick-
ened, and so only intersection must be checked. The indices for the horizontal local knot vector are
{4, 5, 8, 9, 11} and the local knot vector is gA,1 = {0, 1, 4, 5, 7}. The indices for the vertical local knot
vector are {3, 4, 8, 9, 10} and so the local knot vector is gA,2 = {0, 0, 4, 5, 6}. Once the T-spline basis func-
tions have been defined and control points have been assigned to each one, the geometric map is given by

x(s, t) =

n∑
A=1

PANA(s, t). (47)
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(a) p1 = 2, p2 = 2 anchors are faces.
Thickened anchor lines in both directions.

(b) p1 = 3, p2 = 2 anchors are vertical
edges. Only the horizontal anchor line
must be thickened.

(c) p1 = 2, p2 = 3 anchors are horizontal
edges. Only the vertical anchor line must
be thickened.

(d) p1 = 3, p2 = 3 anchors are vertices.
Neither anchor line must be thickened.

Figure 4: Examples for how local knot vectors are constructed for T-spline basis functions of varying values of the polynomial
degrees p1 and p2. The function anchors are marked with light blue. The thickened horizontal anchor line used to determine
the horizontal knot vector is indicated with a dark box where necessary while in cases that do not require thickening it is shown
as a dark blue dashed line. The vertical anchor line used to calculate the vertical knot vector is marked in green. The indices
that contribute to the local knot vectors are marked with × and colored dark blue for those in the horizontal direction and
green for those in the vertical direction.
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Figure 5: T-junction extension in two dimensions for a bicubic T-spline. Face extensions are shown in blue and edge extensions
are shown in green. The T-junctions are marked with orange circles. The T-mesh on the left is not analysis-suitable while the
T-mesh on the right is.

2.6.3. Face and edge extensions and analysis-suitable T-splines
Although the T-spline blending functions defined in this fashion can be used to define smooth surfaces,

many properties of the resulting space are not immediately obvious. In order to develop T-splines that are
well-characterized and suitable for analysis, we introduce the face and edge extensions of T-junctions. A
face extension is a closed line segment that extends from the T-junction in the direction of the face of the
cell at which the T-junction terminates and that crosses b(pi + 1)/2c perpendicular edges or vertices. The
edge extension of a T-junction is a closed line segment that extends from the T-junction in the opposite
direction of the face extension and that crosses d(pi − 1)/2e perpendicular edges or vertices. A T-mesh is
analysis suitable if no vertical T-junction extension intersects a horizontal T-junction extension. Note that
because the edge and face extensions are closed segments, they can intersect at endpoints. The face and
edge extensions are shown for a T-mesh that is not analysis-suitable and for an analysis-suitable T-mesh in
Fig. 5. The T-mesh formed by adding all face extensions to T is called the extended T-mesh and is denoted
by Text.

The T-spline basis defined by an analysis-suitable T-mesh possesses many important mathematical prop-
erties including the following theorems [38, 62]:

Theorem 2.3. The basis functions of an analysis-suitable T-spline are locally linearly independent.

Theorem 2.4. The basis functions of an analysis-suitable T-spline form a complete basis for the space of
polynomials of degree p.

Theorem 2.5. The analysis-suitable T-spline spaces T a and T b are nested (i.e., T a ⊆ T b) if Taext ⊆ Tbext,
that is, if Tbext can be constructed by adding edges to Taext.

We only consider analysis-suitable T-splines (ASTS) for the remainder of this work. The spline space
spanned by a T-spline basis defined by the T-mesh Ta is denoted by T a.

2.7. Bézier extraction and spline reconstruction
Although analysis-suitable T-splines possess the mathematical properties required by analysis it is not

immediately obvious how the basis can be integrated into existing finite-element tools. One of the first issues
that must be addressed is how a computational mesh is obtained from the T-mesh. A simple and elegant
solution to this problem is based on Bézier extraction introduced in Borden et al. [12] for NURBS and Scott et
al. [80] for T-splines. The Bézier mesh B(T) is created by adding the face extensions to T and then mapping
the resulting index mesh to the parametric domain. Note that for ASTS the edges in B(T) represent all lines
of reduced continuity in the T-spline basis. This makes the Bézier mesh the natural mesh for finite element
analysis based on T-splines since the basis is C∞ in the interior of each Bézier element. The image of the
Bézier mesh under the geometric map (Eq. (47)) generates the physical mesh. The Bézier elements for a
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given mesh can be enumerated and so we refer to the elements by their index e. The parametric domain of
a Bézier element e is denoted by Ω̂e and the physical domain of a Bézier element is denoted by Ωe.

Bézier extraction generates the Bernstein-Bézier representation of the T-spline basis over each element.
The resulting linear relationship is encapsulated in the so-called Bézier element extraction operator denoted
by Ce. Given the control values, Pe, associated with the spline basis functions which are nonzero over
element e the control values Qe associated with the Bernstein basis defined over the element are related to
the spline control values using the transpose of the element extraction operator

Qe = (Ce)
T
Pe. (48)

There is an element extraction operator associated with each element in the Bézier mesh. Algorithms for
computing the element extraction operators for ASTS and B-splines are given by Borden et al. [12] and Scott
et al. [80]. Bézier extraction is graphically demonstrated in Fig. 6. The cubic B-spline curve and control
points are shown in the upper left and the corresponding B-spline basis in the lower left. The basis is defined
by the knot vector [0, 0, 0, 0, 1, 2, 3, 4, 4, 4, 4]. The segment of the spline curve corresponding to the second
element is shown in the middle of the figure with its associated control points. The spline basis supported
by the second element is shown below. The Bézier control points produced by the transpose of the element
extraction operator are shown in the upper right with the associated Bernstein basis below.
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Figure 6: Illustration of the Bézier element extraction operator Ce and the spline element reconstruction operator Re for a
spline of degree 3. The Bernstein basis is shown over the biunit interval and so the spline basis segments are reconstructed by
composing the Bernstein basis with the map from the biunit interval to the element.

Lemma 2.6. The Bézier element extraction operators for an analysis-suitable T-spline (and B-splines and
NURBS) are invertible.

Proof. The element extraction operator provides a map from the Bernstein polynomials to the T-spline basis
functions over the element. Both sets are linearly independent and complete (Lemma 2.1 and Theorem 2.3),
therefore the element extraction operator is invertible.

The inverse of the Bézier element extraction operator and its significance have not been considered
previously. It can be seen in Fig. 6 that the inverse transpose of the Bézier element extraction operator
provides a means to convert the Bézier control points into spline control points. For this reason, we have
termed the inverse of the Bézier element extraction operator the spline element reconstruction operator

Re ≡ (Ce)−1 (49)
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or element reconstruction operator for short. Whereas the Bézier element extraction operator “extracts”
Bézier coefficients the spline element reconstruction operator converts Bézier coefficients into spline coef-
ficients, thus “reconstructing” the spline segment. Additionally, the element reconstruction operator can
be used to express the Bernstein basis in terms of the spline basis defined over element e. The element
reconstruction operator is a core component of the Bézier projection method developed in this paper.

3. Bézier projection

Given function spaces A and B, we use Π[A,B] to represent the projection from a function in A to a
function in B. If A ⊆ B, then the projection is exact or injective. Where the meaning is unambiguous, we
use Π[B] to represent the projection onto B or Π to denote a general projection. The definition of a projector
requires that for f ∈ A, Π[A](f) = f .

We define our projection problem as follows: given a function f in some function space F mapping a
domain Ω ⊂ Rm to Rn and a discrete space of spline functions, T , mapping Ω̂ ⊂ Rm to R, find a set of
coefficients or functionals (or vector of functionals if n > 1) {λi(f) : F → Rn} such that the function given
by

Π[F , T ](f) =
∑
A

λA(f)NA, (50)

where NA are the basis functions of T and λA(f) ∈ Rn is the coefficient associated with the Ath basis
function, approximates f in some sense. The optimal projector returns the coefficients λi(f) that minimize
the error with respect to the Lk norm over the domain Ω

εk = ‖f −Π(f)‖k (51)

where ‖f‖k =
(∫

Ω
|f |kdΩ

)1/k. It is standard to use the L2 norm.
If the domain Ω over which the function f is defined does not coincide with the domain Ω̂ over which

the spline basis is defined, a function mapping Ω̂ to Ω, ψ : Ω̂→ Ω must be introduced and the composition
f ◦ψ is projected onto the spline basis. When projecting onto a spline basis over a geometry, this map is the
geometric map x(s) that defines the geometry. For simplicity of exposition, in this section we assume that
the two domains coincide, that is Ω = Ω̂.

In general, the functionals λi of the global projection problem require integration over the entire domain
Ω and solution of a linear system of the same size as the dimension of the spline space T . A localized
projection or quasi-interpolation [75] is defined by choosing functionals λi that can be determined from
function values over a subdomain Ω′ ⊂ Ω and that do not require the solution of a linear system of the same
size as the spline space.

3.1. Formulation of Bézier projection
We introduce Bézier projection as a localized projection operation that uses a linear combination of

projections onto the element Bernstein basis. Given a map φe : [−1, 1] → Ω̂e ⊆ Ω̂ from the biunit interval
to the knot interval (or element) e, we define the projector Πe[Bp] : F → Bp of a function f ∈ F over the
interval e onto the Bernstein basis over the biunit interval as

Πe[Bp](f) =

p+1∑
i=1

βp,ei (f)Bpi (52)

where the functionals βp,ei : F → Rn are obtained from the projection of f ◦ φe onto the Bernstein basis of
degree p. When the meaning is unambiguous, we suppress the superscript p for the polynomial degree. Note
that the original function is defined over the domain Ω = Ω̂ while the definition of local projection Πe[Bp]
presented here introduces a transformation so that the projected segment of f is represented over the biunit
interval. The functionals βp,ei with respect to the L2 norm are found from the linear system

p+1∑
j=1

(Bpi , B
p
j )βp,ej (f) = (Bpi , f ◦ φe) (53)
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where the L2 inner product is defined as

(f, g) =

∫ 1

−1

f(ξ)g(ξ)dξ. (54)

If Ω 6= Ω̂ it would be necessary to introduce an additional transformation ψ : Ω̂→ Ω. In this case, the second
entry in the inner product on the right-hand side of Eq. (53) would be f ◦ ψ ◦ φe. The solution to Eq. (53)
can be written as

βe = G−1b (55)

by using the inverse of the Gramian matrix and defining the vector of functionals (Bernstein coefficients)
βe(f) = {βp,ei (f)}p+1

i=1 and the vector of basis function-function inner products b = {(Bpi , f ◦ φe)}
p+1
i=1 . The

inverse of the matrix G is given in closed form by Eq. (18) and so the solution can be computed directly
without a numerical solution step.

Bézier extraction can be interpreted as a projection of a spline basis function onto the Bernstein basis:

Πe[Bp](Ni) =

p+1∑
i=1

ceijB
p
i , (56)

where ceij are the entries of the element extraction operator Ce. Recall that the function Ni is defined over
the parametric domain of the spline Ω̂ while the Bernstein representation on the right-hand side of Eq. (56)
is defined over the biunit interval. The coefficients of the spline basis functions, denoted by λA(f), over
element e are related to the Bézier coefficients of the Bernstein basis by the element reconstruction operator

λe(f) = (Re)Tβe(f). (57)

3.1.1. Bézier projection weighting scheme
In general, the control value for a given function produced by Bézier projection will be different for each

element in the support of the function. These values must be averaged, selected, or combined in some way to
generate a unique global control point. We choose to construct the global set of coefficients from a weighted
sum of the local coefficients

λA(f) =
∑
e∈EA

ωeAλ
e
A(f) (58)

where EA contains the elements in the support of the Ath basis function and λeA represents the coefficient of
basis function A on element e. These results can be combined to express the full Bézier projection as

ΠB [F , T ](f) =
∑
A

[∑
e∈EA

ωeAλ
e
A(f)

]
NA. (59)

To guide the development of our weighting scheme we recall that

Lemma 3.1. For a spline function T ∈ T we have that λeA(T ) = λA(T ) for all e ∈ EA.

Proof. This follows directly from the definition of Bézier extraction and the element extraction operator and
its invertibility.

Lemma 3.2. If
∑
e=EA

ωeA = 1 then ΠB is a projector.

Proof. Given a function T ∈ T if the weights do not sum to one then the weighted sum of the local coefficients
cannot be equal to the global coefficient and ΠB [T ](T ) 6= T so ΠB is not a projector.

We note that by choosing the weights as ωeA = 1/neA where neA is the number of elements in the support
of the Ath basis function, the local least-squares method of Govindjee et al. [47] is obtained; however, it will
be seen that the weighting proposed here provides significantly increased accuracy in the results.
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A particularly accurate choice of weights is

ωeA =

∫
Ωe NAdΩ∑

e′=EA

∫
Ωe′ NAdΩ

. (60)

When projecting a geometry onto a new basis, the spatial domain ΩA is not defined and the parametric
domain Ω̂A is used instead. The weights obtained by this method for the basis functions defined by the local
knot vectors [0, 0, 0, 1/3], [0, 0, 1/3, 2/3], [0, 1/3, 2/3, 1], [1/3, 2/3, 1, 1], and [2/3, 1, 1, 1] are shown in Fig. 7.
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Figure 7: Weights over each knot span associated with the basis function defined by the local knot vectors [0, 0, 0, 1/3],
[0, 0, 1/3, 2/3], [0, 1/3, 2/3, 1], [1/3, 2/3, 1, 1], and [2/3, 1, 1, 1].

The individual steps comprising the Bézier projection algorithm are illustrated in Fig. 8. The curve
defined by f(t) =

(
t
3

)3/2
e1 + 1

10 sin(πt) e2, t ∈ [0, 3] is projected onto the quadratic B-spline basis defined
by the knot vector [0, 0, 0, 1/3, 2/3, 1, 1, 1]. Because the domain of the curve parameter t does not coincide
with the parametric domain of the spline, we introduce the affine map ψ : [0, 1] → [0, 3] and project f ◦ ψ
onto the spline basis using Bézier projection. All of the basis functions are shown in Fig. 7 along with the
weight associated with each function over each element. The first step is to perform a projection onto the
Bernstein basis for each element to obtain the local Bézier coefficients that define an approximation to the
target function over the element. The Bézier control points are indicated in part (1) of the figure by square
markers that have been colored to match the corresponding element. The local approximation to the target
function is shown along with the control points. Because the local Bézier control points are interpolatory
at the ends of the segments, it can be seen from the placement of the Bézier control points associated with
adjacent segments that the Bézier curve segments are discontinuous.

Next, the element reconstruction operator is used to convert the Bézier control points into spline control
points associated with the basis function segments over each element. This operation does not change the
discontinuous segments that approximate the target function, but rather changes the basis used to represent
those segments from the Bernstein basis to the spline basis. The new control points are marked with inverted
triangles and again colored to indicate the element with which the control point is associated. The control
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points occur in clusters. The clusters of control points represent the contributions from multiple elements
to a single spline basis function control point. The endpoints have contributions from a single element.
The points to the right and left of either endpoint have contributions from two elements. It can be seen
that the center control point contains contributions from each of the 3 elements of the mesh. Again, the
discontinuous nature of the approximation segments can be discerned by observing that the control points
are slightly scattered.

Each cluster of control points must be combined (averaged) to obtain a single control point associated
with the respective basis function. A weighted average of the points in each cluster is computed using the
weighting given in Eq. (60) and the resulting control points are shown as circles with the relative contribution
from each element to each control point indicated by the colored fraction of the control point marker. The
weights are those from Fig. 7. The colors in Figs. 7 and 8 are coordinated to illustrate where the averaging
weights come from and their values. To summarize,

Algorithm 3.3. Bézier projection onto a spline basis.

1. Compute the projection of the target function f onto the Bernstein basis on each element to obtain the
vector of local Bézier control values (Eq. (53)).

2. Use the transpose of the element reconstruction operator to convert the local Bézier values to spline
control values for the element segments (Eq. (57)).

3. Use the weighting defined in Eq. (60) to compute the global spline coefficients from the local spline
control values as given by Eq. (58).

Alternatively, steps 1 and 2 of Algorithm 3.3 can be combined by projecting the target function f directly
onto the local segments of the global spline basis.

When projecting onto splines with parametric cells that are proportionally similar to the physical elements
it may not be necessary for accuracy to compute the physical integrals appearing in Eq. (60). Recall that∫ b
a
Bpi (ξ)dξ = (b − a)/(p + 1). Therefore the weight associated with function A over element e may be

approximated by

ωeA =

vol(Ω̂e)
p+1∑
i=1

ceA,i∑
e′=EA

vol(Ω̂e)
p+1∑
i=1

ce
′
A,i

(61)

where vol(Ω̂e) represents the volume of the parametric domain associated with element e.

3.2. Projection onto a rational basis
When projecting a function f onto a rational basis it is assumed that a weight coefficient is given for

each basis function. These weight coefficients define the weight function given in Eq. (27). Rather than
projecting directly onto the rational basis, we choose to compute a set of homogeneous coefficients λ̃A(f).
These coefficients are related to the coefficients of the rational basis functions by

λA(f) =
λ̃A
wA

. (62)

Leveraging homogeneous coefficients allows us to use Bézier projection as formulated for projection onto a
polynomial spline basis with the exception that the function that we project is w(ξ)f(φ(ξ)). The element
extraction operator can be used to convert the spline weight coefficients to Bézier weight coefficients. The
Bézier weight coefficients can then be used to compute the weight function over element e. In one dimension,
the element weight function is

we(ξ) =

p+1∑
i=1

weiB
p
i (ξ). (63)

The homogeneous Bézier coefficients over the element e are then given by

β̃
e

= G−1b̃ (64)
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(1) Perform local projection to ob-
tain Bézier control points (rep-
resented by squares, colored to
match elements)

(2) Use element reconstruction oper-
ator to project Bézier points to
spline control points (represented
by inverted triangles, colored to
match elements)

(3) Apply smoothing algorithm (con-
tribution of each element to each
control point shown by colored
fraction)

(4) Comparison of final function
(light blue) and target function
(dashed)

Figure 8: Steps of Bézier projection.

where G−1 is given by Eq. (18) and the entries in the vector b̃ are given in one dimension by

b̃i =

∫ 1

−1

Bpi (ξ)we(ξ)f(φe(ξ))dξ. (65)

The Bézier projection process then proceeds as outlined from Eq. (57) onward with all β and λ variables
replaced by their homogeneous counterparts β̃ and λ̃.

3.3. Convergence
We illustrate the convergence of the Bézier projection method with the weighting defined in Eq. (61)

by comparing the error in the global L2 projection to the error in Bézier projection. We use a single cycle
of of a sinusoid over the unit interval given by f(x) = sin(2πx) to test the convergence. The L2 error of
the projection of the sine function onto a spline basis using Bézier projection is compared to the global L2

projection in Fig. 9 for splines with polynomials degree ranging from 2 to 5. It can be seen that the Bézier
projection preserves the optimal convergence rates of the underlying basis for all degrees. Furthermore, the
results of Bézier projection converge rapidly to the global projection results with only weak dependence on
the polynomial degree of the basis.

We now consider the benchmark problem proposed by Govindjee et al. [47] in which the function

f(x, y) = sin

(
3πx√

2R

)
sin

(
2πy

L

)
(66)
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Figure 9: Convergence of the Bézier projection method for the projection of a sine function onto a uniform B-spline basis.

is projected onto the rational spline basis that defines a quarter cylinder of length L and radius R that is
positioned so that one flat edge of the shell lies on the y axis with the lower corner at the origin and the
other lies in the z = 0 plane along the line x =

√
2R. The geometry is illustrated in part (a) of Fig. 10 and

the evaluation of the function f on the surface is shown in part (b) of the same figure.
The convergence of the Bézier projection is compared to global L2 projection in Fig. 11. It can be seen

that the Bézier projection converges optimally. There is an apparent floor for the convergence of the p = 5
case that can be attributed to the conditioning of the Bernstein basis and the element extraction operators.
Addressing this issue is beyond the scope of this paper but will be treated in a future paper.

x

y
z

x

y
z

(a) (b)

Figure 10: Geometry for the Govindjee benchmark problem.

The optimal convergence rates observed in Figs. 9 and 11 support the following theorem.

Theorem 3.4. The Bézier projector ΠB : F → T exhibits optimal convergence rates.

Proof. See Appendix A.

3.4. Applications and examples
3.4.1. Lifting of a surface normal field to spline control vectors

For many operations involving surfaces it is advantageous to have an accurate but approximate spline
representation of the normal field. The normal field n can be approximated by finding a set of “control
vectors” that define a vector field over the surface:

n̂ =
∑
A

VANA. (67)
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Figure 11: Convergence plots for the Govindjee benchmark problem.

The control vectors can be thought of as vectors anchored to the control points that define the surface. We
refer to the process of calculating control vectors from a vector field defined over a surface as “lifting” the
field off the surface onto the control points. The control vectors which approximate a normal field can be
easily computed with Bézier projection. The process is illustrated in Fig. 12. The normal field n for the
curve is depicted with orange arrows. The control vectors VA obtained from Bézier projection of the normal
field onto the spline basis are shown in green on the associated control points. The magnitute of the control
vectors is also shown. It is interesting to note that the control vectors for the approximate normal field have
magnitude greater than 1. The approximate projected normal field n̂ given by Eq. (67) is represented by
the blue empty arrows. The approximate normal field represents the normal field well except in regions of
increased curvature. Because the Bézier projection method enjoys optimal convergence rates, the accuracy
can be improved by increasing the polynomial degree of the spline basis used to represent the normal field
or by subdividing knot intervals.

A more complex T-spline normal lifting example is shown in Fig. 13. A smooth containership hull is
modeled using bicubic T-splines. The Autodesk T-spline plugin for Rhino is used to model the surface [1]
and the Bézier extraction of the surface is then automatically exported for further processing. Note that
once the Bézier extraction is computed, no further information from the original CAD model is required.
The T-splines in Fig. 13a and Fig. 13c are composed of 36 Bézier elements and 75 control points. The
globally-refined T-splines in Fig. 13b and Fig. 13d are composed of 156 Bézier elements and 221 control
points. In Fig. 13a the magnitude of the error in the projected normal field is shown. Notice the expected
concentration of error in regions of high curvature. To improve the accuracy of the projected normal field
the coarse containership hull is globally refined to produce the T-spline in Fig. 13b. Notice the dramatic
improvement in the accuracy of the projected normal field. Fig. 13c and Fig. 13d compare the exact normals
(blue arrows) to the projected normals (red arrows) at the corners of each Bézier element for the coarse and
fine T-spline.

The projected normal field can be used to automatically generate a thickened shell geometry as shown
in Fig. 14. We feel that this approach has the potential to provide a rigorous geometric foundation for
structural mechanics applications based on plate and shell models.
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exact normal

lifted control vector

projected normal|V1 |=1.01

|V2 |=1.1

|V3 |=1.19
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|V5 |=0.99

Figure 12: Lifting of normals
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(a) Magnitude of error in projected normals for coarse T-mesh

(b) Magnitude of error in projected normals for fine T-mesh

(c) Exact normals (blue arrows) compared to projected normals (red arrows) for coarse T-mesh

(d) Exact normals (blue arrows) compared to projected normals (red arrows) for fine T-mesh.

Figure 13: A bicubic T-spline containership hull. The magnitude of the error in the projected normal field for a coarse (a) and
fine (b) T-mesh. The exact normals (blue arrows) are compared to the projected normals (red arrows) at the corners of each
Bézier element for a coarse (c) and fine (d) T-mesh.
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Figure 14: A thickened bicubic T-spline containership hull. This T-spline surface in Fig. 13 has automatically been thickened
using Bézier projection.

3.4.2. Projection between advected meshes
Another application that benefits significantly from Bézier projection are isogeometric methods that rely

on moving or advected meshes. For example, in problems involving flow over moving boundaries or large
deformations it is often necessary to move the mesh with the material and/or remeshing of the computational
domain. This is a fundamental component of arbitrary Lagrangian-Eulerian (ALE) type methods [35, 54].

As a simple example of the behavior of Bézier projection for these problems, we consider a benchmark
problem of pure advection, namely the advection of a sine bump temperature feature by a rotating flow.
The problem statement is given in Fig. 15. Rather than solve the advection problem directly, we employ a
moving mesh approach. The mesh and field defined over it are advected with the flow and then periodically
projected back onto the the original spatial grid. This procedure is illustrated in Fig. 16. The rotation
operator ρ is used to rotate the mesh and field and then a Bézier projection ΠB is used to project the
field from the rotated mesh onto a spatially aligned grid. Bézier projection is especially advantageous here
because only the elements in the rotated mesh that overlap a given element in the spatial mesh are required
to perform the integration on each element. After the local integrations have been completed, the result is
smoothed using Eq. (60). The process is then repeated until the simulation is complete. The spinning mesh
was carried out on a 30 by 30 mesh on a square domain [−1.5, 1.5]× [−1.5, 1.5] using biquadratic B-splines.
The mesh was rotated by θ = π/10 at each time step so that 20 steps were required to complete a full
rotation. A total of 8 rotations of the cone about the origin were computed using 160 steps. The first and
last steps of the simulation are shown in Fig. 17. The 160 steps required to advect the sine bump through 8
rotations have resulted in an increase in over- and undershoot of approximately one percent. A slice through
the solution along the x axis is shown in Fig. 18. The repeated projections between non-aligned meshes have
not produced any observable changes between the initial and final states beyond the slight increase in over-
and undershoot.

4. Projection between spline spaces and operations on splines

We now consider Bézier projection between splines spaces. We refer to the spaces T a and T b as the source
space and target space, respectively. While it is possible to use Bézier projection as defined in Section 3 to
project between spline spaces, we will show that it is possible to define a quadrature-free Bézier projection
approach for projection between spline spaces. This approach can then be used to obtain algorithms for
knot insertion and removal, degree elevation, and reparameterization that can be applied to any spline that
can be represented using Bézier extraction (B-splines, NURBS, T-splines, LR-splines, etc.).

In all cases, the algorithms construct a new spline space and then project the original spline representation
onto the new space. All of these operations except reparameterization consist of either projection from one
space onto a superspace, which we refer to as refinement, or projection from a space onto a subspace, which
we refer to as coarsening. It is also possible to define non-nested refinement operations that increase the
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Figure 15: The rotating cone in a square problem statement.

ρ

Π

Figure 16: Spinning mesh procedure used for the rotating cone in a square problem.
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Figure 17: Initial (top) and final (bottom) steps in the solution of the pure advection of a sine hill by means of an advected
mesh.

number of basis functions or degrees of freedom without projecting onto a superspace although this possibility
is not considered in great depth here beyond reparameterization.

One of the intriguing new features of the isogeometric paradigm is the potential for k-refinement [51, 25],
or in other words, adaptively modifying the local smoothness of the basis to improve the accuracy of the
solution. Hughes et al. [51] and Cottrell et al. [25] originally used the term k-refinement to refer to the process
of generating a sequence of smoother and smoother bases. We prefer to use k-refinement to denote the
process of basis roughening, or reducing the smoothness of a basis through knot insertion, and k-coarsening
to indicate the smoothing of the basis functions through knot removal. The reason for this convention is
twofold. First, we prefer to use the word refinement to indicate the transformation of the solution into a
space that contains the unrefined solution. This is not the case for a smoothed basis. A function represented
in terms of a spline basis that is C1 at each knot cannot be represented by a basis that has higher continuity
at the knots. Second, the word refinement suggests increased resolution or the capability to represent finer
detail or additional features. The process of basis smoothing reduces the dimension of the space and so
we refer to basis smoothing as k-coarsening. The space of spline functions defined by basis roughening
contains the original space and provides additional degrees of freedom and so we feel that it is most natural
to associate basis roughening with k-refinement.

To simplify later developments we adopt the following naming convention:
1. (Cell) Subdivision is h-refinement.
2. (Cell) Merging is h-coarsening.
3. (Degree) Elevation is p-refinement.
4. (Degree) Reduction is p-coarsening.
5. (Basis) Roughening is k-refinement.
6. (Basis) Smoothing is k-coarsening.
7. Reparameterization is r-adaptivity.

Bézier projection between spline spaces reduces to a highly localized projection between two different
Bernstein bases. It is possible to express this in matrix form as

Pe
′,b = (Re′,b)T(Ma,b)T(Ce,a)TPe,a (68)
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Figure 18: Slice of the final result along the line y = 0 for the rotating cone advection problem.

where the element extraction operator on the source mesh Ce,a converts the spline coefficients Pe,a to Bézier
form, the matrix Ma,b converts the Bézier coefficients of the source Bernstein basis into coefficients of the
target Bernstein basis, and the element reconstruction operator on the target mesh is used to convert the new
Bézier coefficients into spline coefficients for the target basis. The weighted average or smoothing algorithm
given in Eq. (58) can then be applied, if necessary, to obtain a set of global coefficients. If the target space is
a superspace of the source space, T a ⊆ T b, then the smoothing algorithm is not required and the projection
is exact. Otherwise, the projection is approximate. The form of M will depend on the particular type of
projection being performed (i.e, h, p, or k).

Leveraging the tensor-product structure of the element extraction and reconstruction operators and the
multivariate Bernstein basis, Eq. (68) can also be written as

Pe
′,b =

{[
(Re′,b

dp
)T(Ma,b

dp
)T(Ce,a

dp
)T
]
⊗ · · · ⊗

[
(Re′,b

1 )T(Ma,b
1 )T(Ce,a

1 )T
]}

Pe,a

=

 dp⊙
i=1

(Re′,b
i )T(Ma,b

i )T(Ce,a
i )T

Pe,a (69)

where dp denotes the number of parametric dimensions and the reversed Kronecker product is denoted by

N⊙
i=1

Ci = CN ⊗ · · · ⊗C1. (70)

This follows from standard properties of the Kronecker product. Thus, most operations can be carried out by
multiplying relatively small matrices for each parametric dimension and then computing the full Kronecker
product of the result. This approach has the added benefit that there is no need to store a large matrix.
Instead, the operators for each dimension may be computed and then used to compute any needed entries
in the large matrix.

4.1. Projection operations between multiple elements
As a preliminary tool we consider the projection between multiple Bézier elements. We will consider

projections to and from a large element ē and n subelements {ei}.
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4.1.1. Projection from a single element onto multiple subelements
We first consider the Bézier projection from a large element ē onto n subelements {ei}. We require that

Ω̂(ei) ∩ Ω̂(ē) = Ω̂(ei) for all ei.

Algorithm 4.1. Bézier projection from a large element ē to a subelement ei.

1. Convert the spline control values to Bézier form using the element extraction operator for the element
ē

Qē = (Cē)TPē. (71)

2. Compute the transformation matrix Ai between the Bernstein basis over the large element and the
Bernstein basis over the small element using Eq. (12) by converting the upper and lower bounds of
the small element ei to the local coordinates of the large element and using the result for ã (lower
bound) and b̃ (upper bound) in Eq. (12). For multivariate elements, the process is carried out in each
parametric dimension and the matrix Ai is given by the Kronecker product

Ai =

dp⊙
j=1

Aj . (72)

3. Apply the transformation matrix to the Bézier control values on the large element to calculate Bézier
control values on the small element

Qei = AiQ
ē. (73)

4. Use the element reconstruction operator on the small element to convert the Bézier control values to
spline control values

Pei = (Rei)TQei . (74)

The matrix expression for these steps is

Pei = (Rei)TAi(C
ē)TPē. (75)

Because ei is completely covered by ē and the basis functions over each element have the same polynomial
degree, a function expressed in terms of the Bernstein basis over the large element can be exactly represented
by the basis over the small element.

4.1.2. Projection from multiple subelements onto a single element
We now consider Bézier projection from a set of n subelements {ei} onto a large element ē.

Remark 4.2. In many cases, like r-adaptivity, it may be that Ω̂(ei) ∩ Ω̂(ē) 6= Ω̂(ei) for some ei. In that
case, apply Algorithm 4.1 first to trim the element so that Ω̂(ei) ∩ Ω̂(ē) = Ω̂(ei).

The operation to convert the spline form defined over elements {ei} to Bernstein-Bézier form on element
ē is

NTP = B̄
T
Qē + ε (76)

where N denotes the vector of spline basis functions defined over the elements {ei}, P represents the asso-
ciated control values, B̄ is the vector of Bernstein basis functions defined over ē, and Qē is the vector of
control values that we seek. Because the spaces are not nested, there is some error ε associated with the
projection. We can perform an L2 projection of the spline function onto the Bernstein basis of ē to obtain
the coefficients Qē by multiplying both sides by the Bernstein basis B̄ and integrating over the domain of ē∫

Ω̂(ē)

B̄NTPdΩ̂ =

∫
Ω̂(ē)

B̄B̄
T
QēdΩ̂. (77)

The error in this approximation is orthogonal to the basis B̄. Note that this is a matrix equation; each
integral is assumed to be carried out over each entry in the matrix. Now convert the left-hand side from an
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integral over the domain of ē to a sum of integrals over the domains of the elements {ei} and use the element
extraction operators to convert from spline coefficients to Bézier coefficients over each element

n∑
i=1

∫
Ω̂(ei)

B̄BT
i Q

eidΩ̂ =

∫
Ω̂(ē)

B̄B̄
T
QēdΩ̂. (78)

We now exploit the relationship between the Bernstein bases given by Eq. (14) to write the Bernstein basis
over ē in terms of the Bernstein basis over the elements {ei}

B̄ = A−T
i Bi. (79)

This relationship permits Eq. (78) to be written as

n∑
i=1

∫
Ω̂(ei)

A−T
i Bi(Bi)

TQeidΩ̂ =

∫
Ω̂(ē)

B̄B̄
T
QēdΩ̂. (80)

The integrals generate the Gramian or inner product matrices for the basis functions B̄ andBi. The Gramian
matrix for a Bernstein basis defined over the biunit box of dimension dp is given by

G =

∫
[−1,1]dp

B(ξ) [B(ξ)]
T
dΩ̂. (81)

The Gramian matrix for a Bernstein basis defined by a tensor product over any other box of the same
dimension can be related by a constant scaling related to the volumes of the two boxes. As a result, the
Gramian matrix for the Bernstein bases B̄ and Bi are given by

Ḡ =
vol Ω̂(ē)

2dp
G (82)

Gi =
vol Ω̂(ei)

2dp
G. (83)

An expression for the Gramian matrix is given in Eq. (15). With these relationships Eq. (78) can be rewritten
without quadrature as

n∑
i=1

A−T
i GiQ

ei = ḠQē (84)

and Qē is given in terms of the Gramian G of the Bernstein basis over the biunit interval by

Qē =

n∑
i=1

φiG
−1A−T

i GQei (85)

where φi = vol Ω̂(ei)/vol Ω̂(ē).

Algorithm 4.3. Projection of control values from n elements {ei} onto control values for a single element
ē.

1. Use the element extraction operators for the elements {ei} to convert the control values on each element
to Bézier form

Qei = (Cei)TPei . (86)

2. The vector of Bézier control values on ē is given by Eq. (85)

Qē =

n∑
i=1

φiG
−1A−T

i GQei . (87)

3. Use the element reconstruction operator for ē to convert the Bézier control values to spline control
values

Pē = (Rē)TQē. (88)
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4. Use the weights defined in Eq. (60) to compute the new global control values for the Ath function on
the target mesh from the new local control values

PA =
∑
ē∈EA

ωēAP
ē
A. (89)

In many cases, the element extraction operators, the Bernstein transformation matrices Ai, and the
Gramian matrix G are all formed from Kronecker products, and so it is possible to rewrite steps 1-3 of
Algorithm 4.3 as a more efficient Kronecker product matrix expression

Pē = (Rē)T

[
n∑
i=1

φiG
−1A−T

i G(Cei)TPei

]
(90)

=

n∑
i=1

φi

 dp⊙
j=1

(Rē
sj )TG−1

sj A−T
i,sj

Gsj (Cei
sj )T

Pei . (91)

In two dimensions, n∑
i=1

φi

2⊙
j=1

(Rē
sj )TG−1

sj A−1
i,sj

Gsj (Cei
sj )T

Pei =

{ n∑
i=1

φi
[
(Rē

t )
TG−1

t A−1
i,tGt(C

ei
t )T

]
⊗
[
(Rē

s)
TG−1

s A−1
i,sGs(C

ei
s )T

]}
Pei . (92)

Step 3 in the above algorithm can also be replaced by the following approximate process: Compute a weighted
average of the projection of the Bézier control values on the source elements onto control values on the target
using the ratio of the parametric volume of ei to the parametric volume of ē as the weight. For each source
element, there is a transformation operator Ai given by Eq. (12) that can be used to relate coefficients of the
basis on the source element to coefficients of the basis on the target element. The matrix Ai is calculated
by converting the upper and lower parametric bounds of each element ei to the local coordinates of the
element ē and using the lower bound as ã and the upper bound as b̃ in Eq. (12) with a = −1 and b = 1. For
multivariate elements, the process is carried out for each parametric dimension and the matrix Ai is given
by

Ai =

dp⊙
j=1

Ai,sj . (93)

The weighted average of the transformed control values is

Qē =

n∑
i=1

φiAiQ
ei . (94)

4.2. p-adaptivity of B-splines and NURBS
Degree elevation or p-refinement can be viewed as Bézier projection from one spline space to another spline

space of higher polynomial degree in at least one dimension. The projection is exact. For tensor-product
splines p-refinement is accomplished by incrementing the multiplicity of each knot and the polynomial degree
in any dimension that is to be elevated. Next, the Bézier element extraction operators for the source mesh, the
element reconstruction operators for the target mesh, and the transformation matrix between the Bernstein
bases on the source and target meshes are computed. We call the Bernstein transformation in the case of
p-refinement the degree elevation matrix. It can be obtained using standard approaches [40].

The degree elevation matrix Ep,p+1 used to elevate a one-dimensional Bernstein polynomial of degree p
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by one is a p+ 1× p+ 2 matrix with entries given by:

Ep,p+1
1,1 = 1

Ep,p+1
i,i+1 =

i

p+ 1
, for i = 1, 2, . . . , p+ 1

Ep,p+1
i+1,i+1 = 1− i

p+ 1
, for i = 1, 2, . . . , p+ 1

Ep,p+1
p+1,p+2 = 1,

Ep,p+1
i,j = 0, otherwise. (95)

This is the matrix that, given the vector of Bernstein polynomials of degree p and the vector of Bernstein
polynomials of degree p+ 1, satisfies

Bp = Ep,p+1Bp+1.

In other words, it provides a representation of the Bernstein basis of degree p in terms of the basis of degree
p + 1. Degree elevation of Bernstein polynomials by more than one degree can be achieved by repeated
application of degree elevation matrices or the use of optimized algorithms [89]. For multivariate tensor-
product splines, the degree elevation matrix is constructed from the Kronecker product of one-dimensional
degree elevation matrices. If the original degree in each dimension is given by the degree vector p =
{p1, p2, . . . , pd} and the final degree in each dimension is given by p′ = {p′1, p′2, . . . , p′d} subject to the
constraint that p′i ≥ pi then

Ep,p′
= Epd,p

′
d ⊗ · · · ⊗Ep1,p

′
1 . (96)

The case where some dimensions are elevated and others are not can be accommodated by requiring that
Epi,pi be equal to the identity matrix of dimension pi + 1.

Algorithm 4.4. Degree elevation of a B-spline or NURBS (p-refinement)
1. Create the target mesh by incrementing the degree and knot multiplicity in each parametric direction

that is to be elevated.
2. Perform the Bézier projection

Pe,b = (Re,b)T(Ep,p′
)T(Ce,a)TPe,a (97)

Because the spline spaces are nested the weighted averaging step is not required.

An example of a single degree elevation in one dimension is shown in Fig. 19. The original curve is shown
in the center. The original basis is defined by the knot vector

{0, 0, 0, 0, 1/3, 1/3, 2/3, 2/3, 1, 1, 1, 1} . (98)

The elevated curve is shown on the right and the elevated basis is defined by the knot vector

{0, 0, 0, 0, 0, 1/3, 1/3, 1/3, 2/3, 2/3, 2/3, 1, 1, 1, 1, 1} . (99)

It can be seen that the elevated knot vector is obtained by increasing the multiplicity of each knot in the
original knot vector by one. The basis functions generated by these knot vectors are shown above the curves
and the basis functions are colored to match the associated control points. The extraction operator on the
second element e2 in the source mesh is

Ce2,a =


1/2 0 0 0
1/2 1 0 0
0 0 1 1/2
0 0 0 1/2

 (100)

The Bernstein degree elevation matrix to elevate from degree 3 to degree 4 is given by Eq. (95) as

E3,4 =


1 1/4 0 0 0
0 3/4 1/2 0 0
0 0 1/2 3/4 0
0 0 0 1/4 1

 . (101)
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The extraction operator on second element in the target mesh defined by Eq. (99) is

Ce2,b =


1/2 0 0 0 0
1/2 1 0 0 0
0 0 1 0 0
0 0 0 1 1/2
0 0 0 0 1/2

 (102)

and so the associated reconstruction operator is

Re2,b =


2 0 0 0 0
−1 1 0 0 0
0 0 1 0 0
0 0 0 1 −1
0 0 0 0 2

 . (103)

These are the matrices required for Eq. (97). The result of using these matrices and the appropriate matrices
for the other elements in the mesh to elevate the original curve in the lower center of Fig. 19 is shown on
the lower right of the same figure. The original curve and control points are shown in gray on the right
for reference. It can be seen that the elevated curve exactly represents the original curve and that the new
control points lie on the lines connecting the original control points.

degree reduced original curve degree elevated
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Figure 19: B-spline elevation and reduction by Bézier projection.

Degree reduction or p-coarsening can be viewed as Bézier projection from one spline space to another
spline space of lower polynomial degree in at least one dimension. The projection is approximate. For
tensor-product splines p-coarsening is accomplished by decrementing the multiplicity of each knot and the
polynomial degree in any dimension that is to be reduced. Next, the Bézier element extraction operators for
the source mesh, the element reconstruction operators for the target mesh, and the transformation matrix
between the Bernstein bases on the source and target meshes are computed.

The transformation matrix that provides the best L2 approximation of the Bernstein basis of degree p
by the basis of degree p− 1 is given by the right pseudoinverse of the matrix Ep−1,p defined by Eq. (95)

Dp,p−1 = (Ep−1,p)T
[
Ep−1,p(Ep−1,p)T

]−1
. (104)

This is due to the fact that the best L2 projection for polynomial degree reduction is given by the best
Euclidean approximation of the the Bézier coefficients [66, 70]. In other words, for degree reduction of
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Bernstein polynomials, L2 projection of the functions reduces to `2 projection of the function coefficients.
The multivariate transformation matrix is given by the Kronecker product of the one-dimensional matrices

Dp,p′
= Dpd,p

′
d ⊗ · · · ⊗Dp1,p

′
1 (105)

where p′i ≤ pi.

Algorithm 4.5. Degree reduction of a B-spline or NURBS (p-coarsening)

1. Create the target mesh by decrementing the degree and knot multiplicity in each parametric direction
that is to be reduced.

2. Perform the Bézier projection

Pe,b = (Re,b)T(Dp,p′
)T(Ce,a)TPe,a (106)

3. Smooth the result
PbA =

∑
e∈EA

ωeAP
e,b
A . (107)

An example of this process is given in Fig. 19. The degree-reduced basis is defined by the knot vector

{0, 0, 0, 1/3, 2/3, 1, 1, 1} .

The original basis is again defined by Eq. (98) and so the exraction operator on the second element of the
source mesh is given by Eq. (100). The extraction operator for the second element in the target mesh e2 is

Ce2,b =

1/2 0 0
1/2 1 1/2
0 0 1/2

 (108)

and so the associated reconstruction operator is

Re2,b =

 2 0 0
−1 1 −1
0 0 2

 . (109)

The degree reduction operator from degree 3 to degree 2 is

D3,2 =
1

20


19 −5 1
3 15 −3
−3 15 3
1 −5 19

 . (110)

The averaging weights for the target basis are the same as for the example illustrated in Fig. 7. The result of
applying Algorithm 4.5 to degree reduce the curve in the lower center of Fig. 19 is shown on the lower left of
the same figure and the original curve is shown in gray for reference; it is apparent that the degree reduced
curve is only an approximation to the original curve. This is in contrast to the elevated case in which the
curve was preserved exactly.

4.3. p-adaptivity of T-splines
Degree elevation of a T-spline is achieved by increasing the degree and multiplicity of each edge in

each elevation direction by one and propagating T-junctions through any new repeated edges. To ensure
nestedness of degree elevated T-splines requires that the extended source and target T-meshes are nested
and analysis-suitable. This is a mild generalization of Theorem 2.5.

Consider the even-to-odd degree elevation example shown in Fig. 20. A representative source mesh is
shown in Fig. 20a. The degree and multiplicity of each edge in each elevation direction is increased by one
and T-junctions are propagated through any new repeated edges. This process produces the target mesh
shown in Fig. 20b. It can be easily verified that the extended T-meshes are nested. This ensures that the
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quadratic T-spline basis function, anchored at the orange diamond in Fig. 20a, can be exactly represented
in the degree elevated T-mesh by the four cubic functions anchored at the blue diamonds in Fig. 20b.

Now consider the odd-to-even degree elevation example shown in Fig. 21. A representative source mesh
is shown in Fig. 21a. Again, the degree and multiplicity of each edge in each elevation direction is increased
by one and T-junctions are propagated through any new repeated edges. However, in this case the extended
T-meshes are not nested due to the repeated vertical edges at 3

5 . Inspection of the mesh shown in Fig. 21b
reveals that the nine quadratic functions, anchored at the blue diamonds in Fig. 21b, needed to represent
the linear function anchored at the orange diamond in Fig. 21a, are not reproduced by the refined T-mesh
in Fig. 21b. In this case, each T-junction must be extended across a single parametric element and through
the repeated edges on the opposite side as shown in Fig. 21c.

(a) original mesh (p = 2) (b) elevated mesh (p = 3)

Figure 20: T-spline elevation even to odd.
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(a) original mesh (p = 1) (b) elevated mesh (p = 2)

(c) extended elevated mesh (p = 2)

Figure 21: T-spline elevation odd to even.
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Algorithm 4.6. Degree elevation of an analysis-suitable T-spline (p-refinement)

1. Create the target mesh by incrementing the degree and multiplicity of all T-mesh edges in each para-
metric direction that is to be elevated.

2. Extend all T-junctions through any repeated edges.
3. Modify T-junctions so that Taext ⊆ Tbext and Tbext is analysis-suitable.
4. Continue from step 2 of Algorithm 4.4.

An example of T-spline degree elevation is shown in Fig. 22. The original T-mesh for a C1 T-spline of
degree 3 in each direction is shown in the upper center of the figure. Repeated knots are indicated by closely
spaced edges. A random surface is generated by assigning a uniformly distributed random value between
0 and 1/2 to the elevation values of the control points that generate a linearly parameterized surface. This
random surface is shown in the lower center. The degree elevation algorithm for ASTS is applied to the
original mesh to obtain the degree-elevated mesh shown in the upper right. The result of applying the Bézier
projection algorithm to compute the elevated surface shown in the lower right. The original surface is shown
as a wireframe for comparison while the elevated surface is blue. It can be seen that the elevated surface
coincides exactly with the original surface.

degree-reduced T-mesh original T-mesh degree-elevated T-mesh

degree-reduced surface original surface degree-elevated surface

Figure 22: T-spline reduction and elevation by Bézier projection.

Algorithm 4.7. Degree reduction of an analysis-suitable T-spline (p-coarsening)

1. Create the target mesh by decrementing the degree and multiplicity of all T-mesh edges in each para-
metric direction that is to be reduced.

2. Modify T-junctions so that Taext ⊇ Tbext and Tbext is analysis-suitable.
3. Continue from step 2 of Algorithm 4.5.

An example of T-spline degree reduction is shown in Fig. 22. The degree reduction algorithm is applied
to the original T-mesh in the upper center to obtain the reduced T-mesh shown on the upper left. The result
of applying the Bézier projection algorithm to compute the reduced surface is shown in the lower left. The
original surface is shown as a wireframe for comparison while the reduced surface is blue. It can be seen that
while the reduced surface has an overall shape similar to the original surface, as expected, the two surfaces
do not match.
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Remark 4.8. Due to T-junction extension in degree elevation and T-junction retraction in degree reduction
the number of Bézier elements defined by the source and target T-meshes may be different. In that case,
Algorithm 4.1 may be required to compute the projection.

4.4. k-adaptivity of B-splines and NURBS
Basis roughening or k-refinement is achieved by increasing the multiplicity of some or all of the knots.

Basis smoothing or k-coarsening is achieved by decreasing the multiplicity of some or all of the knots.

Algorithm 4.9. Roughening of a NURBS or B-spline (k-refinement)

1. Create the target mesh by incrementing the knot multiplicity of some of the knots in each parametric
direction that is to be roughened.

2. Perform the Bézier projection
Pe,b = (Re,b)T(Ce,a)TPe,a. (111)

Because the spline spaces are nested the weighted averaging step is not required.

Algorithm 4.10. Smoothing of a NURBS or B-spline (k-coarsening)

1. Create the target mesh be decrementing the knot multiplicity of some of the knots in each parametric
direction that is to be smoothed.

2. Perform the Bézier projection using Eq. (111).
3. Smooth the result

PbA =
∑
e∈EA

ωeAP
e,b
A . (112)

smoothed original curve roughened

0
1
3

2
3 1 0

1
3

2
3 1 0

1
3

2
3 1

Figure 23: B-spline roughening and smoothing by Bézier projection.

Basis roughening and coarsening for a one-dimensional B-spline curve are illustrated in Fig. 23. We begin
with a cubic B-spline basis defined by the knot vector

{0, 0, 0, 0, 1/3, 1/3, 2/3, 2/3, 1, 1, 1, 1} . (113)

The basis is shown in the upper center of Fig. 23. The extraction operator on the second element e2 defined
by this knot vector is the same as for the degree elvation example given previously in Eq. (100) A set of
control points is chosen to define the curve shown in the lower center of the figure. A refined or roughened
basis is defined by the knot vector

{0, 0, 0, 0, 1/3, 1/3, 1/3, 2/3, 2/3, 2/3, 1, 1, 1, 1} . (114)
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Because the knot multiplicity is equal to the polynomial degree, the extraction and reconstruction operators
defined by this knot vector are identity matrices of size p+ 1.

A smoothed basis is defined by the knot vector

{0, 0, 0, 0, 1/3, 2/3, 1, 1, 1, 1} . (115)

The element extraction and reconstruction operators for the second element in the smoothed mesh are

Ce2,b =


1/4 0 0 0
7/12 2/3 1/3 1/6
1/6 1/3 2/3 7/12

0 0 0 1/4

 (116)

and

Re2,b


4 0 0 0
−4 2 −1 1
1 −1 2 −4
0 0 0 4

 . (117)

The roughened and smoothed bases are shown in the upper right and left of Fig. 23 and the projection
of the original curve onto the new basis is shown below each. It is apparent that the refined basis exactly
represents the original curve (shown in gray for comparison) and that the number of control points has been
increased (indicating the increased dimension of the roughened spline space). In contrast, the coarsened
basis cannot fully represent the original curve because of the increased continuity and the reduced size of
the basis.

4.5. k-adaptivity of T-splines
Roughening or k-refinement of a T-spline is achieved by increasing the multiplicity of each edge in

each roughening direction by one and propagating T-junctions through any new repeated edges. To ensure
nestedness of roughened or k-refined T-splines requires that the extended source and target T-meshes are
nested and analysis-suitable as described in Theorem 2.5.

Algorithm 4.11. Roughening of a T-spline (k-refinement)

1. Create the target mesh by incrementing the multiplicity of any edges that are to be roughened.
2. Extend all T-junctions through any repeated edges.
3. Modify T-junctions so that Taext ⊆ Tbext and Tb is analysis-suitable.
4. Continue from step 2 of Algorithm 4.9

Smoothing of a T-spline is the opposite of roughening.

Algorithm 4.12. Smoothing of a T-spline (k-coarsening)

1. Create the target mesh by decrementing the multiplicity of any edges that are to be smoothed.
2. Modify T-junctions so that Tbext ⊆ Taext and Tb is analysis-suitable.
3. Continue from step 2 of Algorithm 4.10.

Examples of T-spline roughening and smoothing are shown in Fig. 24. The same random surface used
for T-spline elevation and reduction is used.

4.6. h-adaptivity of B-splines and NURBS
Subdivision or h-refinement is achieved by subdividing a set of knot intervals or elements with non-zero

parametric length (area/volume).

Algorithm 4.13. Subdivision for a B-spline or NURBS (h-refinement)

1. Create the target mesh by subdividing knot intevals with non-zero parametric length.
2. Perform the Bézier projection in Algorithm 4.1.
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smoothed original surface roughened

Figure 24: T-spline roughening and smoothing by Bézier projection.

Because the spline spaces are nested the weighted averaging step is not required.

To illustrate Algorithm 4.13 and in particular the application of Algorithm 4.1 we derive global h/2
refinement of a univariate B-spline using Bézier projection. The knot vector is

{0, 0, 0, 1/4, 1/2, 3/4, 1, 1, 1}. (118)

The quadratic basis is shown in the upper center of Fig. 25. A new knot vector is constructed by dividing
every nonzero knot interval in half to obtain

{0, 0, 0, 1/8, 1/4, 3/8, 1/2, 5/8, 3/4, 7/8, 1, 1, 1}. (119)

The refined basis is shown on the upper right of Fig. 25. The element extraction operators for both the
source and target meshes can be be computed using the methods given by Borden et al. [12] and Scott et al.
[80]. All that remains in order to use Algorithm 4.1 is the computation of A. As stated in Algorithm 4.1,
the transformation operator is found by converting the bounds of the small (target) element to the local
coordinates of the large (source) element and then using Eq. (12). We follow the standard finite-element
convention that the local coordinate system of an element is the domain [−1, 1]. For each element in the
source mesh, we must project onto two new elements, one bounded by −1 and 0 in the local coordinate
system of the source element and the other bounded by 0 and 1. There is a distinct transformation operator
associated with each of the new elements which we denote Al for the left subelement (the subdomain [−1, 0])
and Ar for the right subelement (the subdomain [0, 1]). The boundaries of each subelement are used for ã
and b̃ while −1 and 1 are used for a and b in Eq. (12) to obtain

Al =

 1 0 0
1/2 1/2 0
1/4 1/2 1/4

 , Ar =

1/4 1/2 1/4
0 1/2 1/2
0 0 1

 . (120)
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The extraction operator for the first element in the source mesh (corresponding to the interval [0, 1/4]) is

Ce1 =

1 0 0
0 1 1/2
0 0 1/2

 . (121)

(122)

The element extraction operators for the first two elements of the target mesh (corresponding to the intervals
[0, 1/8] and [ 1

8 ,
1/4]) are

Ce′1 =

1 0 0
0 1 1/2
0 0 1/2

 , (123)

Ce′2 =

1/2 0 0
1/2 1 1/2
0 0 1/2

 . (124)

The reconstruction operators for these elements are

Re′1 =

1 0 0
0 1 −1
0 0 2

 , (125)

Re′2 =

 2 0 0
−1 1 −1
0 0 2

 . (126)

The control points associated with the first interval in the target mesh are given by

Pe
′
1 = (Re′1)TAl(C

e1)TPe1 (127)

where Pe1 = {P1,P2,P3}T and Pe
′
1 =

{
P′1,P

′
2,P

′
3

}T and the control points for the second interval are
given by

Pe
′
2 = (Re′2)TAr(C

e1)TPe1 (128)

where Pe
′
2 =

{
P′2,P

′
3,P

′
4

}T. Because the source space is a subspace of the target space, the values computed
for P′2 and P′3 will be the same for both of the target elements. The results of carrying the projection process
out for the control points that define the curve in the lower center of Fig. 25 are shown on the right of the
same figure.

Merging or h-coarsening is achieved by removing unique knots to combine two or more knot intervals
into a single interval.

Algorithm 4.14. Merging for a B-spline or NURBS (h-coarsening)

1. Create the target mesh by removing knots.
2. Perform the Bézier projection in Algorithm 4.3.
3. Smooth the result

PbA =
∑
e∈EA

ωeAP
e,b
A . (129)

To illustrate Algorithm 4.14 we remove knots 1/4 and 3/4 from {0, 0, 0, 1/4, 1/2, 3/4, 1, 1, 1} to obtain

{0, 0, 0, 1/2, 1, 1, 1}. (130)
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Figure 25: Refinement and coarsening of a spline curve by Bézier projection.

The basis defined by this knot vector is shown in the upper left of Fig. 25. The element extraction operators
for the first two elements in the source mesh (knot intervals [0, 1/4] and [1/4, 1/2]) are

Ce1 =

1 0 0
0 1 1/2
0 0 1/2

 , (131)

Ce2 =

1/2 0 0
1/2 1 1/2
0 0 1/2

 (132)

and the element extraction and reconstruction operators for the first element of the target mesh (knot interval
[0, 1/2]) that the two source elements are projected onto are

Ce′1 =

1 0 0
0 1 1/2
0 0 1/2

 , (133)

Re′1 =

1 0 0
0 1 −1
0 0 2

 . (134)

The matrices used to transform the Bézier coefficients of the source elements onto the target element are
computed by converting the lower and upper bounds of the target element into the local coordinates of the
source elements. For this case, the bounds of the target element map to −1 and 3 on the first source element
e1 and −3 and 1 on the second source element. These values for the upper and lower bounds are used as
values for a and b in Eq. (13) while ã = −1 and b̃ = 1 to obtain

A−1
1 =

 1 0 0
−1 2 0
1 −4 4

 , (135)

A−1
2 =

1 −4 4
0 2 −1
0 0 1

 . (136)

Note that A−1
1 is in fact the inverse of the matrix Al defined in the previous example of h-refinement and

A−1
2 is the inverse of Ar. Each of the source elements covers half of the target element and so the weight
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for the relative contribution of each element to the final control points is φ1 = φ2 = 1
2 . Finally, the Gramian

matrix for the Bernstein basis of degree 2 is

G =

 2/5 1/5 1/15

1/5 4/15 1/5
1/15 1/5 2/5

 . (137)

The expression for the points points on e′1 given by Algorithm 4.3 for this problem is

Pe
′
1 = (Re′1)T

[
1

2
G−1A−T

1 G(Ce1)TPe1 +
1

2
G−1A−T

2 G(Ce2)TPe2
]

(138)

where Pe1 = {P1,P2,P3}T and Pe2 = {P2,P3,P4}T. The result obtained by completing this process for
the remaining elements and computing the weighted average of the resulting control points on each element
in the target mesh is shown in the lower left of Fig. 25. It can be seen that the coarsened basis cannot fully
capture the original curve (shown in gray for comparison).

4.7. h-adaptivity of T-splines
Subdivision or h-refinement and merging or h-coarsening of a T-spline is achieved by subdividing or

merging Bézier elements in the T-mesh.

Algorithm 4.15. Subdivision for a T-spline (h-refinement)

1. Create the target mesh by adding edges to the T-mesh.
2. Extend T-junctions so that Taext ⊆ Tbext and Tb is analysis-suitable.
3. Perform the Bézier projection in Algorithm 4.1.

Because the spline spaces are nested the weighted averaging step is not required.

Algorithm 4.16. Merging for a T-spline (h-coarsening)

1. Create the target mesh by removing edges from the T-mesh.
2. Modify T-junctions so that Tbext ⊆ Taext and Tb is analysis-suitable.
3. Continue from step 2 of Algorithm 4.14.

We present simple examples of T-spline subdivision and merging in Fig. 26. The original T-mesh is
shown in the upper center of the figure. A randomly generated surface is shown in the lower center of
Fig. 26. The refined T-mesh is produced by adding edges in the upper left and lower right corners of the
original T-mesh to obtain the T-mesh shown in the upper right of the figure. New control point positions
are computed by Bézier projection. The original and refined surfaces are compared in the lower right of the
figure using the same convention to distinguish between the two as in the previous two T-spline examples
(Figs. 22 and 24). It can be seen that the refined surface coincides exactly with the original surface. The
coarsened mesh is shown in the upper left of the figure. The coarsened mesh is obtained from the original
T-mesh by removing edges from 3 cells in the upper and lower left corners of the mesh. The new control
point positions are computed by Bézier projection. The original and coarsened surfaces are compared in the
lower left of Fig. 26. It can be seen that the coarsened surface only approximates the original surface.

4.8. r-adaptivity of B-splines, NURBS, and T-splines
Reparameterization or r-adaptivity in this paper refers to the process of moving knots or T-mesh edges.

This can be used to adjust the relative size of elements and hence the resolution of the mesh while leaving
the number of degrees of freedom unchanged. Reparametrization does not generally produce nested spaces.
Reparameterization requires combined use of Algorithms 4.1 and 4.3.

Algorithm 4.17. Reparameterization of B-splines, NURBS, and T-splines (r-adaptivity)

1. Create the target mesh by repositioning knots or edges.
2. Compute a target-to-source element map by enumerating all source elements that must be projected

onto each target element.
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Figure 26: T-spline subdivision and merging by Bézier projection.

3. For each element in the target mesh if the number of elements that are to be projected onto the element
is greater than one, use Algorithm 4.3, otherwise use Algorithm 4.1.

4. Smooth the result
PbA =

∑
e∈EA

ωeAP
e,b
A . (139)

An example of reparameterization is given in Fig. 27 for a B-spline curve. The knot vector for the source
mesh is

{0, 0, 0, 1/2, 1, 1, 1} (140)

and the spline basis defined by this knot vector is shown in the upper center of Fig. 27. The reparameterized
knot vector is chosen as

{0, 0, 0, 7/10, 1, 1, 1} (141)

and the associated basis is shown in the upper right of Fig. 27. The target-to-source element map is[
[1, 2]
[2]

]
. (142)

This means that elements 1 and 2 in the source mesh must be projected onto element 1 in the target mesh and
element 2 in the source mesh must be projected onto element 2 in the target mesh. The element extraction
operators defined by the source mesh are

Ce1 =

1 0 0
0 1 1/2
0 0 1/2

 , (143)

Ce2 =

1/2 0 0
1/2 1 0
0 0 1

 . (144)
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The element extraction operators defined by the target mesh are

Ce′1 =

1 0 0
0 1 3/10

0 0 7/10

 , (145)

Ce′2 =

3/10 0 0
7/10 1 0
0 0 1

 . (146)

The associated reconstruction operators are

Re′1 =

1 0 0
0 1 − 3

7
0 0 10

7

 , (147)

Re′2 =

 10
3 0 0
− 7

3 1 0
0 0 1

 . (148)

left reparameterization original curve right reparameterization
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Figure 27: B-spline reparameterization by Bézier projection.

We begin with the projection of the control points associated with e1 and e2 on the source mesh onto
the element e′1 on the target mesh. Algorithm 4.3 must be used because two elements are being projected
onto one element. The transformation matrix A−1

1 that connects the Bernstein basis on e1 to the basis on
e′1 is found by converting the lower and upper bounds of e1 to the local coordinates of e′1 to obtain a = −1
and b = 3/7. Using these values with ã = −1 and b̃ = 1 in Eq. (13), the transformation matrix is

A−1
1 =

1

49

 1 0 0
14 35 0
4 20 5

 . (149)

Because the spline segments over e1 and e2 must be projected onto e′1 it is necessary to find an intermediate
representation of the segment from e2 so that Algorithm 4.3 can be applied. The representation of the segment
over the element defined by the intersection of e2 and e′1 is found by multiplying the Bézier coefficients on
e2 by

A′ =

 1 0 0
4/5 1/5 0

16/25 8/25 1/25

 . (150)
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This matrix is given by Eq. (12) with a = −1, b = 1, ã = −1, b̃ = −3/5. The transformation matrix to
convert from the representation over e2 ∩ e′1 to e′1 is given by Eq. (13) with a = 3/7 and b = 1

A−1
2 =

1

4

49 −70 25
0 14 −10
0 0 1

 . (151)

The Bernstein basis is again of degree 2 and so the Gramian is given by Eq. (137). The element fractions are
φ1 = 5/7 and φ2 = 2/7. The set of control points associated with element e1 is Pe1 = {P1,P2,P3}T and the
set of control points associated with element e2 is Pe2 = {P2,P3,P4}T. With this information, the control
points on the target element e′1 are given by

Pe
′
1 = (Re′1)TG−1

[
5

7
A−T

1 G(Ce1)TPe1 +
2

7
A−T

2 GA′(Ce2)TPe2
]
. (152)

The control points on element e′2 are found by projecting the control points from e2 and so Algorithm 4.1
is appropriate. The transformation matrix A is given by Eq. (12) with a = −1, b = 1, and the element
boundaries of e′2 are converted to the local coordinates of e2 to obtain ã = −2/3 and b̃ = 1:

A =
1

36

25 10 1
0 30 6
0 0 36

 . (153)

The control points on e′2 are given by

Pe
′
2 = (Re′2)TA(Ce2)TPe2 . (154)

The weighted average of the control points on each element to obtain the global control points is now
computed. The weights for the basis functions shown in the upper right of Fig. 27 for each element are

ω
e′1
1 = 1, ω

e′1
2 =

13

16
, ω

e′1
3 =

7

24
(155)

ω
e′2
2 =

3

16
, ω

e′2
3 =

17

24
, ω

e′2
4 = 1. (156)

The global control points are thus given by

P′1 = P
e′1
1 , P′2 =

13

16
P
e′1
2 +

3

16
P
e′2
1 , P′3 =

7

24
P
e′1
3 +

17

24
P
e′2
2 , P′4 = P

e′2
3 .

The result of this process is illustrated for a simple curve in Fig. 27. The original curve and control points
are shown in the lower center and the new curve, produced by the projection of the original control points
onto the reparameterized basis, and control points are shown in the lower right. Since the spaces are not
nested the two curves are not equal (the source curve is shown in gray on the lower right for comparison).
The reparameterization produced by shifting the center knot to the left instead of to the right is shown
on the left of Fig. 27 for comparison. Because the slope of the curve at the new knot location is better
represented in the left-shifted basis than in the right-shifted basis, the new curve produced by projection
onto the left-shifted basis more closely approximates the original curve than the right-shifted basis.

Two simple examples of reparameterization applied to a T-spline are shown in Fig. 28.

4.9. Combining h-, p-, k-, and r-refinement and coarsening
Refinement and coarsening by Bézier projection lends itself well to the successive application of different

refinement and coarsening procedures. Once the control values have been converted to Bézier form each
operation is accomplished by the application of the appropriate matrix. When applying multiple operations
it is most efficient to convert to Bézier form, apply all necessary transformation matrices to the Bernstein
coefficients, and then convert to spline form and, if necessary, apply the weighted averaging algorithm as the
final processing step. If any of the operations are not exact then this approch avoids the accumulation of
error associated with each weighted averaging step. The result will be identical if all of the operations are
exact.

47



left shifted T-mesh original T-mesh right shifted T-mesh

left shifted surface original surface right shifted surface

Figure 28: T-spline reparameterization by Bézier projection.

5. Summary and conclusions

We have presented Bezier projection as a unified approach to local projection, refinement, and coarsening
of NURBS and T-splines. The approach employs a simple three-step procedure, namely, projection onto a
local basis, conversion to a global basis, and smoothing using a weighting scheme. Moreover, the approach
relies on the fundamental concept of Bezier extraction and the associated spline reconstruction developed
here, resulting in an element-based formulation that may be easily implemented in existing finite element
codes. Optimal convergence rates are proven, and a novel weighting scheme is presented that leads to
dramatic improvements in accuracy over previous approaches. In fact, by comparing our Fig. 11 to Fig. 5 in
Govindjee et al. [47], it can be seen that the methodology proposed here produces significantly better results.
Several exemplary applications of Bezier projection are presented to illustrate the accuracy, robustness, and
flexibility of the method.

In the event that data fitting or interpolation is desired, Bézier projection is easily modified to accomodate
these cases. There are efficient and accurate methods for determining the Bernstein representation of a
polynomial interpolating function [68, 69]. Once the Bernstein representation has been computed, the spline
segment representation over each element can be computed using the element reconstruction operator and
the weighted average is computed as before.

This procedure of computing a Bernstein representation, converting to a local spline representation, and
then smoothing the result to obtain a smooth global spline representation or approximation provides a general
tool for adapting methods developed for Bernstein polynomials into methods for splines. Indeed, the whole
host of methods and techniques developed for Bernstein polynomials can be applied locally, converted to
spline form and then a smoothed global spline approximation can be computed using the weighted averaging
developed here. A retrospective overview of work on Bernstein polynomials is given by Farouki [40] and
many interesting possibilities can be found there and in the references contained therein.

A unified framework was developed for quadrature-free degree elevation, degree reduction, knot insertion,
knot removal, and reparameterization of B-splines, NURBS, and T-splines that requires only element-level
information. We feel that Bézier projection provides the fundamental building blocks required for hpkr-
adaptivity in isogeometric analysis.
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A. Optimal convergence of the Bézier projection operator

In this appendix, we prove that the Bézier projection operator presented in this paper exhibits optimal
convergence rates. For the sake of brevity, we restrict our discussion to the one-dimensional setting. By
using the methods presented in [4] and [26], one may extend our theory to the multi-dimensional, rational,
and analysis-suitable T-spline settings. In what follows, T denotes a univariate B-spline space consisting
of Cα-continuous piecewise polynomials of degree p. We assume that the parametric space Ω̂ and physical
space Ω coincide, simplifying our exposition. We additionally employ the simplified notation ΠB to represent
the Bézier projection operator ΠB [F , T ] : F → T wherein it is assumed that F = L2(Ω). Throughout this
appendix, we exploit the notion of a Bézier element. We denote each Bézier element using index e and the
domain of each Bézier element using Ωe, and we define EI to be the set of all Bézier elements. We will also
need the notion of a support extension. For a Bézier element e, the support extension Ω̃e is the union of the
supports of basis functions whose support intersects Ωe.

The first ingredient we need in proving optimal convergence of the Bézier projection operator is approx-
imability. The following lemma states the local approximation properties of the spline space T , and a proof
of the lemma may be found in [4].

Lemma A.1. Let k and l be integer indices with 0 ≤ k ≤ l ≤ p+ 1 and l ≤ α+ 1. For each Bézier element
e ∈ EI , there exists an s ∈ T such that

|v − s|Hk(Ω̃e) ≤ Capphl−ke |v|Hl(Ω̃e) (A.1)

where he is the mesh size of element e, Ω̃e is the support extension of element e, and Capp is a constant
independent of h but possibly dependent on the shape regularity of the mesh, polynomial degree, continuity,
and the parameters k and l.

The next two ingredients we need in proving optimal convergence are idempotence and local stability. The
following lemma states these properties for the Bézier projection operator. The proof of the lemma is rather
involved, so we postpone the proof until later in the appendix.

Lemma A.2. We have:

ΠB(s) = s, ∀s ∈ T (spline-preserving property) (A.2)

‖ΠB(v)‖L2(Ωe) ≤ Cstab‖v‖L2(Ω̃e), ∀v ∈ L2(Ωe), ∀e ∈ EI (local stability property) (A.3)

where Cstab is a constant independent of h but possibly dependent on the shape regularity of the mesh,
polynomial degree, and continuity.

Using Lemmata A.1 and A.2 we can state the convergence properties of the Bézier projection operator.

Theorem A.3. Let k and l be integer indices with 0 ≤ k ≤ l ≤ p+1 and l ≤ α+1. For each Bézier element
e ∈ EI , the following inequality holds:

‖f −ΠB(f)‖Hk(Ωe) ≤ Cinthl−ke ‖f‖Hl(Ω̃e), ∀f ∈ H l(Ω̃e) (A.4)

where he is the mesh size of element e, Ω̃e is the support extension of element e, and Cint is a constant
independent of he but possibly dependent on the shape regularity of the mesh, polynomial degree, continuity,
and the parameters k and l.

Proof. Let s ∈ T be as in Lemma A.1. Then, by Lemma A.2,

|v −ΠB(v)|Hk(Ωe) = |v − s−ΠB (v − s) |Hk(Ωe)

≤ |v − s|Hk(Ωe) + |ΠB (v − s)|Hk(Ωe)

= I + II

By Lemma A.1, we immediately have

I ≤ Capphl−ke ‖f‖Hl(Ω̃e).
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The standard inverse inequality for polynomials yields

II ≤ Cinvh−ke ‖ΠB (v − s)‖L2(Ωe)

where Cinv is a constant which only depends on polynomial degree. By Lemma A.2, we then have

II ≤ CinvCstabh−ke ‖v − s‖L2(Ω̃e) ≤ CinvCstabCapphl−ke ‖f‖Hl(Ω̃e).

Thus the theorem holds with Cint = Capp (1 + CinvCstab).

We now return to the proof of Lemma A.2. While the spline-preserving property holds trivially, the
local stability property is more technical to establish. To proceed, we will need the results of the following
two lemmata. The first lemma concerns the stability of the local Bézier element extraction operator and its
inverse while the second concerns the stability of local L2-projection onto the Bernstein basis.

Lemma A.4. For each Bézier element e ∈ EI , the norm of the element extraction operator Ce (and
its inverse) is independent of the mesh size h but possibly dependent on the shape regularity of the mesh,
polynomial degree, and continuity.

Proof. The lemma is a consequence of the fact that the element extraction operators for a given B-spline
space are invariant under constant scalings of the domain Ω.

Lemma A.5. For each Bézier element e ∈ EI , the local Bernstein coefficient vector βe associated with the
local L2-projection of a function f ∈ L2(Ωe) onto the space of polynomials of degree p satisfies the inequality

‖βe‖∞ ≤
Cp

h
1/2
e

‖f‖L2(Ωe) (A.5)

where he is the mesh size of element e and Cp is a constant only dependent upon the polynomial degree p.

Proof. The vector of coefficients βe = [βp,ei ] are defined through the equation:

βe = G−1b

where G = [Gij ] with

Gij =

∫ 1

−1

Bpi (ξ)Bpj (ξ)dξ

and b = [bi] with

bi =

∫ 1

−1

Bpi (ξ)
(
f ◦ φ−1

e

)
(ξ)dξ.

In the above equation, φe : [−1, 1]→ Ωe is the standard affine map from the biunit interval onto element e.
Since Bpi ≤ 1, we have that

‖b‖∞ ≤
∫ 1

−1

∣∣(f ◦ φ−1
e

)
(ξ)
∣∣ dξ = ‖f ◦ φ−1

e ‖L1([−1,1]) = 2h−1
e ‖f‖L1(Ωe) ≤ 2h−1/2

e ‖f‖L2(Ωe).

The last inequality above follows from Hölder’s inequality. Moreover, by scaling, we have that ‖G−1‖∞ ≤ CG
where CG is a constant only dependent upon the polynomial degree p. The desired result immediately follows
with Cp = 2CG.

With the preceding two lemmata established, we are now in a position to complete the proof of Lemma A.2.

Proof of Lemma A.2. The spline-preserving property holds trivially. Hence, it remains to prove the local
stability property. Let e ∈ EI and f ∈ L2(Ωe). We have that:

ΠB(f)|Ωe =
∑
A∈Ie

[ ∑
e′∈EA

ωe
′

Aλ
e′

A(f)

]
NA
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where Ie is the index set of all B-spline basis functions whose support overlaps with element e. For each
e′ ∈ EA, the weights ωe

′

A satisfy |ωe′A | ≤ 1 and the vector of coefficients λe
′

= [λe
′

A(f)] is defined by

λe
′

= (Ce′)−Tβe′
(f).

where βe
′
is the local Bernstein coefficient vector associated with the local L2-projection of f onto element

e′. The results of the previous two lemmas dictate that∥∥∥λe′∥∥∥
∞
≤ Cλ

h
1/2
e′

‖f‖L2(Ωe′ )

where he′ is the mesh size of element e′ and Cλ is a constant which only depends on the polynomial degree
p, the continuity α, and the shape regularity of the parametric mesh. Since the B-spline basis functions are
positive and form a partition of unity, we consequently have that

|ΠB(f)| ≤
∣∣∣∣∣∑
A∈Ie

[ ∑
e′∈EA

we
′

Aλ
e′

A(f)

]
NA

∣∣∣∣∣
≤
∣∣∣∣∣∑
A∈Ie

[ ∑
e′∈EA

Cλ

h
1/2
e′

‖f‖L2(Ωe′ )

]
NA

∣∣∣∣∣
≤ max
A∈Ie

[ ∑
e′∈EA

Cλ

h
1/2
e′

‖f‖L2(Ωe′ )

] ∣∣∣∣∣∑
A∈Ie

NA

∣∣∣∣∣
≤ max
A∈Ie

[ ∑
e′∈EA

Cλ

h
1/2
e′

‖f‖L2(Ωe′ )

]

≤ Creg
Cλ

h
1/2
e

‖f‖L2(Ω̃e)

over element e where Creg is a constant only dependent on the shape regularity of the mesh and Ω̃e is the
support extension of element e. Therefore:

‖ΠB(f)‖L2(Ωe) =

(∫
Ωe

|ΠB(f)|2dξ
)1/2

≤ Creg
Cλ

h
1/2
e

‖f‖L2(Ω̃e)h
1/2
e

= CregCλ‖f‖L2(Ω̃e).

Thus the local stability result holds with Cstab = CregCλ.
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