

CUBIT Fast-Start Tutorial **11. Mesh Control**

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Perform Action	
•	
Property	Value
✓ General	·
ld	1
Туре	Volume
Name	Volume 1
Idless Signature	calc
Color	Not Set
Location	0.000000, 0.000000,
✓ Geometry	
Engine	ACIS
Volume	calc
✓ Meshing	
Is Meshed	No
Number of Elements	0
Number of Nodes	0
Requested Intervals	Not Set
Requested Size	1
Miched Volume	calc
Mesh Scheme	Derdult
Smooth Scheme	Equipotential
Sizing Function	None

Mesh size can be set on geometry entities from property panel

Mesh Sizing

Mesh Size Command Panels

Simulation Modeling Sciences

Mesh size is an attribute of the geometry. Select entity then set attribute

Automatic Sizing: relative value

1 = fine mesh 10 = coarse mesh Good way to preview element sizes

Approximate Size: mesh algorithms will try to maintain constant edge length

Approximate Interval Count:

number of intervals on a curve. Will match approximately

Sizing Function: Specify a sizing function.

Geometry Adaptive: Size based on geometry characteristics.

Auto Mesh Sizing

Automatic Sizing	•	
Select Volumes		Simulation Sing Sciences
1		
Auto Factor		
Fine	Coarse	
Approximate Size: default	Move slider to	Auto aiza = 7
Propagate	see preview of	Auto size – 7
Preview	mesh on curves	
Appl	y Size	
Check For Overlapping Surfaces		
	seh	
No need to know exact	t size of	
elements		Auto size = 5
Uses heuristic to comp	oute size	
of element		
If no size has been set,	, CUBIT will	
compute an auto mes	sn size=5	
		Auto size Santia National
		CUBIT Basic Tutorial

- Arbitrary geometry
- Mostly push-button/automatic
- May still require geometry clean-up

Simulation Modeling Sciences

Select Volumes	
1	
Number of Tets in Proximity 3	
Deviation Angle 15	
Interior Growth Ratio	
Global Surface Mesh Settings	
Surface Gradation 1.3	
Volume Gradation 1.3	
Advanced	
(i) Apply Scheme	
Check For Overlapping Surfaces	
Apply Scheme Before Meshing	
Scheme: Mesh	Number of Tets in Proximity

CUBIT Basic Tutorial

Simulation Modeling Sciences

Select Volumes	Deviation A
1	Angle 0
Number of Tets in Proximity 3	
Deviation Angle 15 <	/
Interior Growth Ratio 1	
Global Surface Mesh Settings	θ/
Surface Gradation 1.3	Deviation
Volume Gradation 1.3	Angle
Advanced	
(j) Apply Scheme	
Check For Overlapping Surfaces	
Apply Scheme Before Meshing	•
Scheme: Mesh	Deviation Angle (Geometry Approximation Angle)

CUBIT Basic Tutorial

				$\Delta \Delta \Delta$
Select Volumes				
1				
-				
Number of Tets in Proximity 3	}			
Deviation Angle	.5 ←			
Interior Growth Ratio	L			
Global Surface Mesh Settings			A	
Surface Gradation	.3			
Volume Gradation	.3			
Advanced				
(i) 🥠 Apply	y Scheme			
Check For Overlapping Surfaces				
Apply Scheme Before Meshing		¢ ^z x		
Scheme:	Mesh	Deviation Ang	le (Geometry Approximation Angl	le)

Select Volumes				
1				
Number of Tets in Proximity	3			
Deviation A	Angle 15			
Interior Growth	Ratio 1 <			
Global Surface Mesh Settings				
Surface Grad	ation 1.3			
Volume Grad	ation 1.3			
Advanced				
(i) ?	Apply Scheme			
Check For Overlapping Surface	25			
Apply Scheme Before Meshing				
Scheme:	Mesh			

Interior Growth Ratio

Select Volumes		
1		
Number of Tets in Proximity 3	3	13
Deviation Angle	15	1.0
Interior Growth Ratio		
Global Surface Mesh Settings		
Surface Gradation	1.3 <	
Volume Gradation	1.3	
Advanced		11
(i) 🥠 Apply	y Scheme	1.1
Check For Overlapping Surfaces		
Apply Scheme Before Meshing		
Scheme: M	Mesh Surface Gradation	

Select Volumes		
1		
Number of Tets in Proximity	3	
Deviation Ang	le 15	
Interior Growth Rat	io 1	
Global Surface Mesh Settings		
Surface Gradatio	n 1.3	
Volume Gradatio	in 1.3 <	
Advanced		
(i) 🥠	Apply Scheme	
Check For Overlapping Surfaces		Z X
Apply Scheme Before Meshing		
Scheme:	Mesh	Surface Volume Gradation

Advanced	
✓ Tet Respect Global Tetmesh Settings Tet Optimization Level Standard Minimize Over-Constrained Tets Minimize Sliver Tets Minimize Interior Points Relax Surface Mesh Constraints	Tet Respect: Force TetMesh to conform to internal features (specified here) Tetmesh Global Settings Mesh Optimization settings not normally changed
(j) ✓ ✓ Check For Overlapping Surfaces ✓ Apply Scheme Before Meshing Scheme: Mesh	

TriMesh Scheme

Simulation Modeling Sciences

TriMesh Scheme: Settings on Volume (TetMesh Scheme) are by default propagated to surfaces

Normally no reason to set Trimesh Scheme separately

Exercise 1: Tet meshing

Laboratories

Exercise 1: Tet meshing

Simulation Modeling Sciences Modify the following parameters and observe the changes to the mesh

- 1. Number of Tets in Proximity = 3
- 2. Deviation angle = 5
- 3. Surface Gradation = 1.2

Use the slice tool to see the interior of the mesh

From the command line: **draw tet all**

Curve Biasing

- 1 Navigate to Curve Bias Panel
 - Pick a Curve.
 - Select Bias and Intervals & Bias
 - Set number of intervals, start vertex, etc..
 - Adjust slide bar to preview

Simulation Modeling Sciences

Propagate Curve Bias

Choose from Bias Scheme on GUI panel 3

Mesh Control Exercise 2

aboratories

Mesh Refinement

- Hex, tet, face, and tri mesh refinement
 - Simply specify a mesh or geometry entity and size

Mesh Refinement

Simulation Modeling Sciences

Refine {Node|Edge|Tri|Face|Tet|Hex}
<range> [NumSplit <int = 1>|Size
<double> [Bias <double>]] [Depth
<int>|Radius <double>] [Sizing_Function]
[no smooth]

Refine {Vertex|Curve|Surface|Volume}
<range> [NumSplit <int = 1>|Size
<double> [Bias <double>]] [Depth
<int>|Radius <double>] [Sizing_Function]
[no_smooth]
CUBIT Basic Tutorial

Sandia National Laboratories

Mesh Control Exercise 3

Use the same model you created for exercise 2 and reset the volume

Use the refine surface command panel to generate a graded hex mesh. Try an element depth of **5**.

Reset the volume, generate a tet mesh and use the same tool to generate a graded tet mesh

Graded hex mesh using element depth 5 applied twice

Graded tet mesh using element depth 5 applied twice

Mode	- Mesh				
Entity	- Surface	•			
		٢	*	2	
tột		₽	۵		+
2					
Action	n - Refine				
Π		8	ø	ß	×
	1→ 100		∎≯		
Gen	eral Refin	ement			•
urface ID(s				
Refiner	ment Con	dition			
🔵 split i	Iterations	1			
🔵 Targe	et Size	1			
35	1	.0			
Refiner	ment Bou	ndary			
Element Depth					
Refinement Radius					
Smooth					
D Apply					

Modeling Sciences

Mesh Quality Command Panel

Note that this panel is available for volumes, surfaces and elements

Simulation Modeling Sciences

Select a meshed volume to examine

Select a Quality Metric

4 Select the options for displaying the metrics

Quality Metrics

Definitions of the metrics are in the online documentation

– Go to the quality page and hit the F1 key

Function Name	Dimension	Full Range	Acceptable Range	Reference
Aspect Ratio	L ⁰	1 to inf	1 to 4	[5]
Skew	L ^o	0 to 1	0 to 0.5	[5]
Taper	L ^o	0 to +inf	0 to 0.4	[5]
Element Volume	L ³	-inf to +inf	None	[5]
Stretch	L ^o	0 to 1	0.25 to 1	[6]
Diagonal Ratio	L ^o	0 to 1	0.65 to 1	
Dimension	L^1	0 to +inf	None	[5]
Oddy	Lo	0 to +inf	0 to 20	[7][8]
Condition No.	L ^o	1 to inf	1 to 8	[8]
Jacobian	L ³	-inf to +inf	None	[8]
Scaled Jacobian	L ^o	-1 to +1	0.5 to 1	[8]
Shear	L ^o	0 to 1	0.3 to 1	[9]
Shape	L ⁰	0 to 1	0.3 to 1	[9]
Relative Size	L ⁰	0 to 1	0.5 to 1	[9]

Mode	e - Mesh					
Entit	y - Volum	e				
		C	\star	4		
1Ş2		Ħ	Å		+	
3						
Actio	n - Qualit	Y				
Π		9	ø	ß	×	
	1+ 100		Ø			
💡 Qua	ality Metric	'S			•	
Volume ID(a					
Quality Metric Shape 🔻						
Summa	ary Option	15				
One	bined Sun Summary	nmary Per Entit	Y			
Eilter F	ement O	uality Ran	ine in			
	using Elem	ent Qual	ty Kank			
Display Graphical Summary						
Draw Mesh Elements						
Draw Histogram						
Monochrome						
Clear Display for Mesh						
Print Text Summary						

Automatic Mesh Quality Checks

- Quality is automatically computed after every meshing or smoothing operation
- Always check output window following meshing

```
CUBIT> Mesh Volume 1
ERROR: >>>> Negative Jacobian Hex Element Generated! <<<<
Check Mesh Quality.
CUBIT> Mesh Volume 1
WARNING: >>>> Poorly-shaped Hex Element Generated! <<<<
Check Mesh Quality</pre>
```

- Use smoothing, cleanup or modify the geometry to improve quality before using mesh with poor quality in an analysis
- Poor quality may be acceptable if located where physics is not as important. Engineering judgment needed.

1	Options		? ×				
	Command Panels	Hex Quality Metrics					
~	Display General Geometry Defaults History Label Defaults Layout Mesh Defaults Mouse Post Meshing Quality Defaults Hex Quad Tet Tri	Metric Minimum Maxin Aspect Ratio 1 4 Condition No. 1 8 Diagonal Ratio 0.65 1 Dimension 0 1e+03 Distortion 0.6 1 Element Volume 0 1e+03 Jacobian 0 1e+03 Scaled Jacobian 0.5 1.01 Shape 0.3 1 Shape 0.3 1 Shape 0.2 1 Skew 0 0.5 Stretch 0.25 1 Taper 0 0.4	num 0 0 Hex Defaults used. Close				

Select **Options** (or **Preferences** on Mac) menu to define quality metric(s) to use and the minimum and maximum criteria

Smoothing

Simulation Modeling Sciences

Smooth scheme can be set from the property panel

Smooth scheme can also be set from the command panel Many different smoothing schemes with different characteristics

Usually iterative algorithms that attempt to improve the local mesh quality

Smoothing schemes for surfaces and volumes

Smoothing schemes applied as an attribute, (similar to meshing scheme)

Surface and volume schemes are independent (unless free boundary option selected)

Smoothing

Simulation Modeling Sciences

Surface Smoothing Schemes

- Equipotential
- Centroid Area Pull
- Optimize Jacobian
- Winslow
 - longtime favorite for structured meshes has been extended to unstructured in CUBIT - theoretical guarantee against mesh folding
 - fast and high quality, try first
- Laplacian, centroid area pull (smart Laplacian)
 - fast, poor near concave features
- Untangle
 - remove stubborn inverted elements
- Condition number
 - improve stubborn low-quality elements
 - must be non-inverted to start
- Mean Ratio

Volume Smoothing Schemes

Laplacian

- fast, poor quality near concave features

Equipotential

medium fast and medium quality

Untangle

- remove stubborn inverted elements
- Can take a long time
- Control time limit: Volume <range> Smooth Scheme Condition Number [beta <double=2.0>] [cpu <double=10>]

Condition number

- Guarantees the same or better quality
- improve stubborn low-quality elements
- must be non-inverted to start (runs untangle if inverted)
- Can take a long time
- Control time limit: Volume <range> Smooth Scheme Condition Number [beta <double=2.0>] [cpu <double=10>]

Mesh Control Exercise 4

- ← - □

- Open cub file "graft.cub"
 - Navigate to the volume mesh quality panel
- Draw the mesh quality of volume 1 using the *shape* metric.
- Filter the mesh based on an upper limit of .4 and a lower limit of 0 and redraw the mesh.
 - Draw the shape quality histogram for volume 1.
- Smooth volume 1 using *mean ratio*.
 - Draw the mesh quality of volume 1 using the shape metric and the same filter as before.
- 3) Set the 3D filter in the tool bar.
- Select one of the poorly shaped elements and examine the properties panel.

Mesh Control Exercise 5

Simulation Modeling Sciences

Import the acis file "driver.sat"

Draw surface 55

- 3) Set the mesh size to **1.0** on surface **55**
- Mesh surface **55** using the paving scheme
- 5 Check the *edge length* quality. Use the quality command panel **?** located under edge elements
- 6 What is the smallest edge length? Average edge length? Zoom to the smallest edge.
- 7
- Use the *edge length* surface smoothing scheme to smooth surface 55
- 8
- Check the edge length quality again for surface 55 Note any changes to the mesh What is the smallest edge length now?

Interactive node editing

Simulation Modeling Sciences

Draws element outlines as nodes are moved.

Select nodes to reshape elements

Mesh Import

Simulation Modeling Sciences

Importing an existing mesh into Cubit

Select the File->import menu
 Choose the Genesis/Exodus File Filter
 Select a mesh file to import
 Choose how you want Cubit to use the mesh

Mesh Geome		ree Mesh		🔵 Lite				
Advanced Opti	ons ¥4			_				
Blocks		[Feature A	Angle 1	35.00			
Id/Name Co	lision Options	c	Seometry Inte	erpolation	Linear	-		
Block/			Geometry Creation Respects					
Nodeset/ Sideset	Combine by Id	•	Blocks	Sidese	ts 🔽 N	lodesets		
Element Ids	Make unique	•	Merge Ge	ometry				
Node Ids	Make unique	• [Merge No	odes				
Offset In	Offset Incoming Ids			Node Merge Tolerance Apply Deformations				
Block Id Offset			Time	0.0000000		~		
Sideset Id Offse	et		Step	1		~		
Nodeset Id Offset			Last Time Step					
Element Id Offs	set		Scale	1.0				
Node Id Offset								

Note that in addition to Exodus, Patran, Ideas, Abaqus, Fluent and Nastran mesh file formats are also supported.

- 1. Mesh Geometry: A new "mesh-based" geometry definition is automatically created on import. Vertices, Curves, Surfaces and Volumes are generated from the boundary of the mesh.
- 2. Free Mesh: Imports the mesh with no geometry association
- **3. Lite:** Imports a light-weight version of the mesh suitable for responsive display and a small set of operations.

Mesh Control Exercise 6

- Import the exodus file "crunch.e" as a meshbased geometry. Use a feature angle of 0 —
 - Examine the mesh quality. What do you notice?

3

Navigate to the Remesh Tet Command Panel

Simulation Modeling Sciences

crunch.e

Tet mesh after deformations applied from an analysis

Mesh Control Exercise 6 (con.)

Simulation Modeling Sciences

What do you notice?

