Coreform Cubit 2025.1 User Documentation

Example 7. Using virtual geometry in geometry decomposition

Virtual geometry is used to change the properties of mesh without changing the underlying geometry. The next example uses virtual geometry to remove unwanted sliver curves, and to create a sweepable volume. The composite curve function is used to combine sliver curves that are created from webcutting a slightly curved surface. Then the partition surface command is used to create additional partitions on a surface to ensure sweepability.

Suggested webcuts

Webcut Command

Coreform Cubit> webcut volume 1 sweep surface 2 vector 0 0 -1 through_all

Coreform Cubit> webcut volume 3 sweep surface 108 vector 0 0 -1 through_all

Coreform Cubit> webcut volume 3 sweep surface 13 vector 0 0 -1 through_all

Coreform Cubit> webcut volume 3 sweep surface 28 vector 0 0 -1 through_all

Coreform Cubit> webcut volume 3 sweep surface 74 vector 0 0 -1 through_all

Coreform Cubit> webcut volume 3 with sheet extended from surface 197

Coreform Cubit> webcut volume 8 with sheet extended from surface 224

Coreform Cubit> webcut volume 11 10 12 9 with plane surface 28

Coreform Cubit> webcut volume 3 with plane normal to curve 116 fraction 0.5

Coreform Cubit> webcut volume 3 17 with plane normal to curve 835 close_to vertex 487

Coreform Cubit> webcut volume 18 19 with sheet extended from surface 376

Coreform Cubit> webcut volume 3 17 with sheet extended from surface 378

Coreform Cubit> webcut volume 8 with sheet extended from surface 73

Coreform Cubit> webcut volume 8 with sheet extended from surface 72

Coreform Cubit> webcut volume 8 with sheet extended from surface 133

Coreform Cubit> webcut volume 8 with sheet extended from surface 71

Coreform Cubit> webcut volume 8 with plane vertex 709 vertex 713 vertex 702

Coreform Cubit> unite volume 36 45

Coreform Cubit> unite volume 37 43

Coreform Cubit> unite volume 35 44

Coreform Cubit> unite volume 39 42

Coreform Cubit> webcut volume 29 with plane vertex 81 vertex 93 vertex 154

Coreform Cubit> unite volume 33 36 50 11

Coreform Cubit> unite volume 10 49 37 31

Coreform Cubit> unite volume 12 52 35 34

Coreform Cubit> unite volume 9 51 39 32

Coreform Cubit> unite volume 9 22

Coreform Cubit> unite volume 12 23

Coreform Cubit> unite volume 20 33

Coreform Cubit> unite volume 21 10

Coreform Cubit> webcut volume 12 with plane vertex 86 vertex 71 vertex 76
Coreform Cubit> webcut volume 53 with plane vertex 738 vertex 87 vertex 741
Coreform Cubit> webcut volume 12 with plane vertex 72 vertex 85 vertex 74
Coreform Cubit> webcut volume 55 with plane vertex 754 vertex 205 vertex 208
Coreform Cubit> webcut volume 12 sweep surface 731 along curve 1073 through_all
Coreform Cubit> unite volume 53 57 56
Coreform Cubit> unite volume 54 12 55

Coreform Cubit> webcut volume 9 with plane vertex 99 vertex 101 vertex 103
Coreform Cubit> webcut volume 58 with plane vertex 769 vertex 98 vertex 772
Coreform Cubit> webcut volume 9 with plane vertex 106 vertex 104 vertex 100
Coreform Cubit> webcut volume 60 with plane vertex 781 vertex 201 vertex 198
Coreform Cubit> webcut volume 9 sweep surface 764 along curve 1078 through_all
Coreform Cubit> unite volume 58 62 60
Coreform Cubit> unite volume 59 9 61

Coreform Cubit> webcut volume 20 with plane vertex 140 vertex 138 vertex 135
Coreform Cubit> webcut volume 63 with plane vertex 139 vertex 137 vertex 134
Coreform Cubit> webcut volume 20 with plane vertex 141 vertex 800 vertex 796
Coreform Cubit> webcut volume 64 with plane vertex 803 vertex 220 vertex 223
Coreform Cubit> webcut volume 63 sweep surface 803 along curve 1238 through_all
Coreform Cubit> unite volume 20 67 66
Coreform Cubit> unite volume 65 63 64

Coreform Cubit> webcut volume 21 with plane vertex 165 vertex 163 vertex 160
Coreform Cubit> webcut volume 68 with plane vertex 164 vertex 162 vertex 159
Coreform Cubit> webcut volume 21 with plane vertex 825 vertex 169 vertex 822
Coreform Cubit> webcut volume 69 with plane vertex 830 vertex 216 vertex 213
Coreform Cubit> webcut volume 68 sweep surface 836 along curve 1069 through_all
Coreform Cubit> unite volume 21 72 69
Coreform Cubit> unite volume 70 68 71

These are the steps to webcut each of the stiffeners into the configuration shown. It is repeated for each of the stiffeners. This is also the step which creates the sliver curves which must be composited out later.

Coreform Cubit> webcut volume 70 65 59 54 with plane surface 2

Coreform Cubit> unite volume 1 76 75 73 74

Coreform Cubit> unite volume 28 47 46 41 48 38 8 30 29 40

Coreform Cubit> webcut volume 28 with plane surface 870

Coreform Cubit> webcut volume 28 77 with plane surface 871

Coreform Cubit> webcut volume 28 77 with plane surface 878

Coreform Cubit> webcut volume 28 77 with plane surface 879

Coreform Cubit> webcut volume 1 81 2 82 with plane normal to curve 1849 fraction 0.5

Coreform Cubit>webcut volume 19 18 with plane normal to curve 843 fraction 0.75

Coreform Cubit> create curve vertex 1122 vertex 471 on surface 1134

Coreform Cubit> webcut volume 19 sweep curve 2073 along curve 2042 through_all

Coreform Cubit> webcut volume 18 with sheet extended from surface 1146

Coreform Cubit> webcut volume 18 with sheet extended from surface 1135

Coreform Cubit> unite volume 91 92

Coreform Cubit> delete curve 2073

Coreform Cubit> unite volume 89 18

Coreform Cubit> unite volume 88 19

Coreform Cubit> imprint all

Coreform Cubit> merge all

Composite small curves formed from webcuts

Coreform Cubit> composite create curve 1456 1468
Coreform Cubit> composite create curve 1459 1467
Coreform Cubit> composite create curve 1499 1511
Coreform Cubit> composite create curve 1502 1510
Coreform Cubit> composite create curve 1371 1379
Coreform Cubit> composite create curve 1370 1381
Coreform Cubit> composite create curve 1423 1413
Coreform Cubit> composite create curve 1422 1414
Coreform Cubit> volume all scheme auto

Create the partitioned curves shown using existing vertices

Coreform Cubit> partition create surface 1067 vertex 311 175
Coreform Cubit> partition create surface 1067 vertex 174 312
Coreform Cubit> partition create surface 1063 vertex 123 294
Coreform Cubit> partition create surface 1251 vertex 170 226
Coreform Cubit> partition create surface 1082 vertex 195 115
Coreform Cubit> partition create surface 1082 vertex 242 116
Coreform Cubit> partition create surface 1077 vertex 117 309
Coreform Cubit> partition create surface 1255 vertex 118 310

Meshing order is significant in this case. Since meshing a volume will hard set the interval counts on curves and surfaces, you will need to make sure that all of the interval counts are the same on adjacent volumes. Usually the meshing algorithm can handle this interval matching, but sometimes it helps to mesh volumes in a certain order. In this case, the meshing order also significantly changes the quality in the resulting mesh.

Coreform Cubit> reset volume all
Coreform Cubit> volume all scheme auto
Coreform Cubit> volume 81 scheme sweep source surface 979 target surface 1061 rotate off
Coreform Cubit> volume 81 sweep smooth auto
Coreform Cubit> volume 85 scheme sweep source surface 1061 target surface 889 rotate off
Coreform Cubit> volume 85 sweep smooth auto
Coreform Cubit> volume all size 0.1
Coreform Cubit> curve 2125 2122 interval 12
Coreform Cubit> mesh vol 5 6 7 13 14 15 16 (COLORED GREEN)
Coreform Cubit> mesh Volume 85 81 77 83 78 82 87 28 80 79 (COLORED RED)
Coreform Cubit> mesh vol 88 89 91 90 17 3 (COLORED YELLOW)
Coreform Cubit> mesh volume with not is_meshed (COLORED WHITE)

Final mesh

The final mesh is shown below.