
An isogeometric Reissner-Mindlin shell element based on Bézier

dual basis functions: overcoming locking and improved coarse

mesh accuracy

Z. Zou1, M.A. Scott1, D. Miao1, M. Bischo�2, B. Oesterle2, and W. Dornisch3

1Department of Civil and Environmental Engineering, Brigham Young University, Provo,

UT USA
2Institute for Structural Mechanics, University of Stuttgart, Stuttgart, Germany

3Fachgebiet Statik und Dynamik, Brandenburgische Technische Universität

Cottbus-Senftenberg, Cottbus, Germany

2020-06-02

Abstract

We develop a mixed geometrically nonlinear isogeometric Reissner-Mindlin shell element for the anal-
ysis of thin-walled structures that leverages Bézier dual basis functions to address both shear and mem-
brane locking and to improve the quality of computed stresses. The accuracy of computed solutions over
coarse meshes, that have highly non-interpolatory control meshes, is achieved through the application of a
continuous rotational approach. The starting point of the formulation is the modi�ed Hellinger-Reissner
variational principle with independent displacement, membrane, and shear strains as the unknown �elds.
To overcome locking, the strain variables are interpolated with lower-order spline bases while the varia-
tions of the strain variables are interpolated with the corresponding Bézier dual bases. Leveraging the
orthogonality property of the Bézier dual basis, the strain variables are condensed out of the system with
only a slight increase in the bandwidth of the resulting linear system. The condensed approach preserves
the accuracy of the non-condensed mixed approach but with fewer degrees of freedom. From a practical
point of view, since the Bézier dual basis is completely speci�ed through Bézier extraction, any spline
space that admits Bézier extraction can utilize the proposed approach directly.

Keywords: shells; isogeometric analysis; Reissner-Mindlin; locking; dual basis; Bézier extraction

1 Introduction

Thin-walled shell structures are widely used in engineering due to their high ratio of load capacity to weight.
To model these types of structures with �nite element analysis (FEA) shell elements are often used. Com-
mercial FEA is dominated by shell elements derived from the shear-deformable Reissner-Mindlin (RM) shell
theories since they can be discretized with standard C0 basis functions. Additionally, the rotational degrees
of freedom of a RM formulation can be leveraged to easily accommodate rotational boundary conditions, ge-
ometry with kinks, and non-manifold connections. Recently, isogeometric methods based on C1-smooth (or
higher) splines and the Kirchho�-Love (KL) thin shell theory have increased in popularity. These methods
are computationally e�cient since they do not require rotational degrees of freedom. However, the absence
of rotational degrees of freedom makes modeling complex structural assemblies with KL shells di�cult.

A major challenge in using higher-order smooth splines to discretize shell theories is numerical locking.
The primary sources of locking are shear and membrane locking. In shear locking, pure inextensional bending
modes are polluted by parasitic shear strains and, in membrane locking, pure inextensional bending modes
are polluted by parasitic membrane strains. While not a major contributor to locking for low-order (linear)
shell elements, membrane locking is particularly vexing for higher-order curved shell elements. In this sense,
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shell elements based on smooth splines are more prone to locking than their low-order counterparts. All
locking e�ects can be ameliorated by increasing the degree of the basis functions, but for quadratic and
cubic basis functions, the workhorse degrees in isogeometric shell analysis, locking can still destroy the
accuracy of computed shell solutions, especially in thin shell regimes. In particular, computed stresses can
be completely spurious.

1.1 Key contributions

The speci�c contributions of this paper are:

� A mixed nonlinear isogeometric RM shell formulation is developed which is capable of alleviating both
shear and membrane locking and improving the quality of shear and membrane stresses. Similar to
what was done in [11], the strains are split into appropriate shear and membrane strain components
which are then interpolated directly with lower-order bases.

� An e�cient technique utilizing the Bézier dual spline basis [58, 44] is used to condense out the strain
variables in the mixed shell formulation. This technique preserves the sparsity of the resulting sti�ness
matrix and preserves the accuracy of displacement and stress solutions produced by the non-condensed
mixed formulation.

� The proposed dual basis is speci�ed completely in terms of the Bézier extraction of a given spline space
making it simple to extend the approach to any piecewise polynomial spline space (e.g., T-splines,
hierarchical splines, LR-splines, U-splines, etc.).

� Both continuous and discrete rotational approaches [20, 19, 21] are used in the mixed setting to update
the director orientation. It is demonstrated for the �rst time, that, when locking is eliminated for
p = 2, 3, the inaccuracy of the discrete rotation approach prevents accurate solution behavior for
coarse mesh layouts, thus eliminating one of the most powerful arguments for using IGA shells for
practical problems where reducing element count is paramount. This is particularly true in the large
displacement and rotation setting. The continuous rotation approach, on the other hand, produces
highly accurate results for coarse mesh layouts.

� An e�cient scheme for updating the current director and its derivatives is proposed. It is equivalent
to the scheme proposed in [19, 21] but avoids updating the rotation tensor and its derivatives at each
Newton-Raphson iteration and reduces the storage cost by two thirds at each quadrature point or node
for the continuous and discrete rotational approaches, respectively.

1.2 Prior work

Various techniques have been proposed to address locking in �nite element shells. Prominent among these
approaches are mixed formulations based on generalized variational principles [39, 54, 37] with displacement,
strain and/or stress unknowns, the reduced and selective integration techniques [57, 31, 33], the assumed
strain method [34, 29, 46, 4, 13, 38], and the enhanced assumed strain method [16, 12]. To some extent, the
last three methods are equivalent to a mixed formulation under speci�c conditions [43, 50, 2].

The reduced and selective integration techniques are dominant in commercial low-order (linear) �nite
elements due to their simplicity, e�ciency, and robustness. However, the reduced integration method may
introduce spurious zero energy modes, which is a serious defect requiring some form of stabilization [7].
The selective reduced integration technique is less e�cient than the reduced integration approach in terms
of the computational e�ciency and is usually restricted to cases where the material properties of the shell
do not vary through the thickness. The assumed strain method interpolates selected strain components
with specially constructed lower-order basis functions, while the enhanced assumed strain method attaches
additional terms to the selected strains and introduces extra strain variables that can then be condensed
out on the element level. Although these two methods can remove shear and/or membrane locking for C0

continuous shell elements, they are not as e�ective if higher-order continuous basis is used.
Isogeometric Analysis (IGA), introduced by Hughes et al. [32], adopts the Computer Aided Design (CAD)

description as the basis for analysis. CAD technologies like Non-Uniform Rational B-splines (NURBS) [47],
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subdivision surfaces [55], and T-splines [49, 48] make it possible to de�ne smooth higher-order basis functions
over both structured and unstructured meshes. This has opened the door to new shell formulations based
on both RM and KL shell kinematics [10, 8, 9, 35, 21, 28].

Since the CAD geometry is represented in the analysis, quantities such as curvature, tangents, and
normals are immediately accessible and exact. However, despite the advantages of IGA in shell analysis,
locking behavior persists [22] and, in fact, higher-order smoothness introduces additional challenges such
as pronounced membrane locking [1]. Several traditional �nite element techniques for mitigating locking
have been extended to IGA shells [17, 1, 21, 25, 14, 36]. Those approaches most closely related to the
proposed approach include Bouclier et al. [14] where a mixed isogeometric solid-shell element was developed
that leverages local quasi-interpolation for the strain variables which are then condensed out locally without
calculating the inverse of a large Gramian matrix. Despite some accuracy loss when compared to the
non-condensed mixed formulation, this method leads to a sparse sti�ness matrix, therefore improving the
computational e�ciency. By approximating the strain variables through a local L2-projection [52], Greco
et al [26] proposed a similar formulation to remove membrane locking in curved Kirchho� rods and showed
that a smooth strain interpolation is necessary to achieve accurate results. This approach is then applied to
isogeometric KL shells in [25].

By leveraging C1-smoothness, several new shear-deformable shell formulations have been proposed which
are based on a hierarchical decomposition of the director in the deformed con�guration [45, 40, 23, 6].
These approaches eliminate shear locking a priori while permitting shear deformations. Recently, Bieber
et al. [11] proposed the mixed displacement method. This approach de�nes mixed strain components to
be some derivatives of auxiliary displacement variables. In this way, both shear and membrane locking
can be alleviated in a pure displacement-based formulation (i.e., no lower-order spaces have to be explicitly
constructed). However, this method introduces extra non-physical auxiliary variables and the application of
the gradient operator to these variables introduces additional zero energy modes into the system which must
be removed with appropriate boundary conditions. It also requires the second derivatives of basis functions
to release membrane locking.

The outline of this paper is as follows. In Section 2 fundamental spline concepts are reviewed including
a description of the Bézier dual basis. Section 3 describes nonlinear Reissner-Mindlin shell kinematics.
Two di�erent de�nitions of the rotation of the director commonly used in shear deformable shells, i.e., the
continuous and discrete rotations of the director vector, are introduced in Section 4. Section 5 introduces
the mixed variational formulations which are the starting point for our formulations. We then describe the
interpolation scheme for the assumed shear and membrane strains in Section 6 and propose an e�cient
technique, based on Bézier dual basis functions, to condense out the assumed strain variables in Section 7.
Several challenging benchmark problems are then solved in Section 8 followed by conclusions in Section 9.

2 Spline fundamentals

2.1 Spline bases

The Ith Bernstein polynomial of degree p on [ξ1, ξ2] can be de�ned as

BpI (ξ) =

(
p

I − 1

)(
ξ2 − ξ
ξ2 − ξ1

)p−I+1(
ξ − ξ1
ξ2 − ξ1

)I−1

, (1)

where
(
p
I−1

)
= p!

(I−1)!(p−I+1)! is a binomial coe�cient. A univariate quadratic Bernstein basis on [0, 1] is

shown in Figure 1a. A degree p Bézier curve in Rd can be written as

x(ξ) =

p+1∑
I=1

PI B
p
I (ξ), ξ ∈ [ξ1, ξ2] (2)

where PI ∈ Rd is called a control point.
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(a) Bernstein basis on [0, 1].
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(b) B-spline basis, Ξ = {0, 0, 0, 1, 2, 3, 4, 4, 4}. (c) The Bézier dual basis corresponding to the B-spline
basis in Figure 1b.

Figure 1: A univariate quadratic Bernstein basis (a), a univariate quadratic C1 B-spline basis (b), and the
Bézier dual basis (c) corresponding to the B-spline basis in (b).

A univariate B-spline basis is de�ned by a knot vector Ξ = {ξ1, ξ2, . . . , ξn+p+1}, which consists of a
non-decreasing sequence of real numbers, ξI ≤ ξI+1, I = 1, . . . , n+p+1, where p is the degree of the B-spline
basis and n is the number of basis functions. The Ith B-spline basis function of degree p, denoted by Np

I (ξ),
can be recursively de�ned

N0
I (ξ) =

{
1, if ξI ≤ ξ < ξI+1

0, otherwise

Np
I (ξ) =

ξ − ξI
ξI+p − ξI

Np−1
I (ξ) +

ξI+p+1 − ξ
ξI+p+1 − ξI+1

Np−1
I+1 (ξ).

A univariate quadratic B-spline basis is illustrated in Figure 1b.
A B-spline curve of degree p can be written as

x(ξ) =

n∑
I=1

PIN
p
I (ξ), ξ ∈ [ξ1, ξn+p+1]. (3)

A pth-degree NURBS curve can be represented as

x(ξ) =

n∑
I=1

PIwIR
p
I(ξ), ξ ∈ [ξ1, ξn+p+1] (4)

where the NURBS basis function RpI is de�ned by

RpI(ξ) =
Np
I (ξ)

W (ξ)
(5)
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where Np
I (ξ) is the Ith p-degree B-spline basis function,

W (ξ) =

n∑
I=1

wIN
p
I (ξ) (6)

is a weighting function, and wI is the weight corresponding to control point PI . Since a NURBS curve is
a rational polynomial, it can be used to exactly represent conic sections. Higher dimensional analogs to
these concepts can be created using tensor products or more advanced construction schemes like hierarchical
B-splines [24] and T-splines [49].

2.2 Bézier dual bases

In this section, we introduce the Bézier dual basis by simply following the procedures and similar notation
conventions given in [58]. For conciseness, we only give properties that are used in subsequent sections.
Interested readers are referred to [58] for more details.

The Bézier dual basis, de�ned over the physical domain of an element e, denoted by Ωe, can be written
as

Ñe = diag(ωe)(Re)T (Ge
B,B)−1Be = DeBe (7)

where Be is the set of Bernstein polynomials de�ned on element e,

Ge
B,B =

[∫
Ωe

Bei (ξ)Bej (ξ)dΩ

]
(8)

is the Gramian matrix for the Bernstein basis, Re is the element reconstruction operator [52], De is the dual
element extraction operator [58] and ωe is a vector of smooth weights whose ith component is de�ned as

ωei =

∫
Ω̂e NI dΩ̂∫
Ω̂I NI dΩ̂

(9)

where Ω̂e is the parametric domain of an element and Ω̂I is the parametric support of basis function NI .
In this way, we can easily verify that the inner product of the dual basis Ñe and the B-spline basis Ne

on element e satis�es ∫
Ωe

Ñe(Ne)TdΩ = diag(ωe). (10)

After the standard �nite element assembly, we get the biorthogonality condition over the physical domain Ω
on patch level as ∫

Ω

ÑNTdΩ = I. (11)

If rational basis functions are used, we de�ne the dual basis as

R̃I = W
ÑI
wI

(12)

where W is a rational weighting function and wI is the control point weight. A univariate Bézier dual basis
corresponding to the B-spline basis shown in Figure 1b is shown in Figure 1c.
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3 Shell kinematics
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Figure 2: A schematic of shell kinematics.

The reference and current con�gurations of a shell-like body, as illustrated in Figure 2, are parameterized as

X(ξ1, ξ2, ξ3) = X̄(ξ1, ξ2) + ξ3D(ξ1, ξ2), (13)

x(ξ1, ξ2, ξ3) = x̄(ξ1, ξ2) + ξ3d(ξ1, ξ2) (14)

where −h2 ≤ ξ3 ≤ h
2 , X̄ and x̄ denote the midsurfaces, and D and d denote the directors in the reference

and current con�gurations, respectively. Note that we will adopt the established convention for Latin and
Greek indices (i.e., i = 1, 2, 3 and α = 1, 2).

The base vectors of the midsurfaces can be written as

Aα = X̄,α, A3 = D =
A1 ×A2

|A1 ×A2|
, (15)

aα = x̄,α, a3 = d (16)

where (·),α denotes ∂(·)/∂ξα. The covariant base vectors at any point in the shell continuum are de�ned as

Gα = X,α = X̄,α + ξ3D,α = Aα + ξ3D,α G3 = X,3 = D, (17)

gα = x,α = x̄,α + ξ3d,α = aα + ξ3d,α g3 = x,3 = d. (18)

The Green-Lagrange strain tensor E is de�ned as

E =
1

2
(FTF− I) (19)

where F = dx/dX is called the material deformation gradient and I is the identity tensor. In components,
the Green-Lagrange strain can be written as

Eij =
1

2
(gij −Gij) (20)

where

gij = gi · gj , Gij = Gi ·Gj . (21)
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Substituting (17) and (18) into (20) and neglecting the higher order terms of ξ3, we can get the components
of the Green-Lagrange strain as

Eαβ =
1

2

[
(aα · aβ + ξ3aα · d,β + ξ3d,α · aβ)− (Aα ·Aβ + ξ3Aα ·D,β + ξ3D,α ·Aβ)

]
, (22)

Eα3 =
1

2

(
aα · d + ξ3d,α · d−Aα ·D− ξ3D,α ·D

)
, (23)

E33 =
1

2
(d · d−D ·D) . (24)

The inextensibility assumption of the director, i.e. ||d|| = 1, leads to

d · d = D ·D = 1, (25)

d,α · d = D,α ·D = 0 (26)

and according to the de�nition of D we also have that Aα ·D = 0 and Aα ·D,β = −D ·Aα,β = D,α ·Aβ .
As a consequence, (22) to (24) become

Eαβ =
1

2

[
(aα · aβ −Aα ·Aβ) + ξ3(aα · d,β + d,α · aβ − 2D,β ·Aα

]
, (27)

Eα3 =
1

2
aα · d, (28)

E33 = 0. (29)

Rewriting the non-zero strains with Voigt notation results in

E =

[
ε+ ξ3κ
γ

]
(30)

where ε, κ and γ are the membrane, bending, and shear strains, respectively, which are de�ned as

ε =

 ε11

ε22

2ε12

 , κ =

 κ11

κ22

2κ12

 , and γ =

[
γ1

γ2

]
(31)

where

εαβ =
1

2
(aα · aβ −Aα ·Aβ), (32)

καβ =
1

2
(aα · d,β + d,α · aβ)−D,β ·Aα, (33)

γα = aα · d. (34)

The �rst variation of the strain components can be written as

δεαβ =
1

2
(δx̄,α · x̄,β + δx̄,β · x̄,α),

δκαβ =
1

2
(δx̄,α · d,β + δx̄,β · d,α + δd,α · x̄,β + δd,β · x̄,α),

δγα = δx̄,α · d + δd · x̄,α

(35)

and the second variation as

∆δεαβ =
1

2
(δx̄,α ·∆x̄,β + δx̄,β ·∆x̄,α), (36)

∆δκαβ =
1

2
(δx̄,α ·∆d,β + δx̄,β ·∆d,α + δd,α ·∆x̄,β + δd,β ·∆x̄,α (37)

+ x̄,α ·∆δd,β + x̄,β ·∆δd,α), (38)

∆δγα = δx̄,α ·∆d + δd ·∆x̄,α + x̄,α ·∆δd. (39)
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4 Director de�nition

In this section, we describe both a continuous and discrete approaches to de�ne shell directors in the current
con�guration. In [19, 27, 21], the continuous approach calculates the current director by rotating the initial
director at each quadrature point, while the discrete approach calculates the current director by interpolating
current nodal directors which are also obtained by rotating the initial nodal directors. In both cases,
a rotation tensor and its derivative need to be updated and stored at each quadrature point or node,
respectively.

The present work follows the same update framework, however, the current directors at quadrature
points in the continuous approach or at nodes in the discrete approach are obtained by rotating the previous
directors at the corresponding locations. In this way, we only need to calculate and store the current
director and its derivative information at each quadrature point or node rather than a rotation tensor and
its derivatives, which reduces computational cost and storage. It can be easily shown that the proposed
method is equivalent to that in [27, 20, 19, 21]. The derivations of the variations of the directors and their
derivatives follow standard approaches [19, 27, 21]. For additional details see Appendices B and C.

4.1 The continuous approach

In this case, the current director is de�ned as

di(ξα) = ∆Rdi−1(ξα) (40)

where the superscripts i and i − 1 indicate the Newton-Raphson iterate, ∆R is the incremental rotation
tensor, and

∆R = I + c1∆Ω + c2∆Ω2 c1 =
sin ∆ω

∆ω
c2 =

1− cos ∆ω

∆ω2
∆ω = |∆ω| (41)

where ∆ω = ∆ω(ξα) ∈ Rd is the axial vector of the global incremental rotation at each quadrature point
and

∆Ω = skew∆ω =

 0 −∆ω3 ∆ω2

∆ω3 0 −∆ω1

−∆ω2 ∆ω1 0

 . (42)

The derivatives of the director can be written as

di,α = ∆R,αdi−1 + ∆Rdi−1
,α , (43)

where

∆R,α = c1,α∆Ω + c1∆Ω,α + c2,α∆Ω2 + c2(∆Ω,α∆Ω + ∆Ω∆Ω,α) (44)

∆Ω,α = skew∆ω,α c1,α = ∆ω,α
∆ω cos ∆ω − sin ∆ω

∆ω2
c2,α = ∆ω,α

∆ω sin ∆ω − 2 + 2 cos ∆ω

∆ω3
(45)

∆ω,α =
∆ω,α ·∆ω

∆ω
. (46)

Note that when ∆ω is very small we choose

c1 = 1 , c2 =
1

2
and c1,α = c2,α = ∆ω,α = 0 (47)

to ensure numerical stability.
It is shown in Appendix A that the above approach to calculate di and di,α is equivalent to the approach

in [19, 27, 21] except that only di−1 and di−1
,α need to be stored rather than Ri−1 and Ri−1

,α , therefore
reducing the number of variables stored at each quadrature point from 27 to 9.
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4.2 The discrete approach

In this case, the current director is de�ned through the interpolation of the current nodal directors dI as

dh =
∑
I

NIdI and dh,α =
∑
I

NI,αdI (48)

where

dI = ∆R(∆ωI)d
i−1
I (49)

∆ωI = T3I∆βI . (50)

Note that ∆R(∆ωI) is calculated by inserting the nodal increment of the axial vector ∆ωI into (41) and
T3I is de�ned in (99). Again, we only store nodal director information at nodes.

5 Variational formulation

5.1 The Hu-Washizu variational theorem

The Hu-Washizu functional can be written as

ΠHW (u, Ē, S̄) =
1

2

∫
Ω

ĒTS̄ dΩ−
∫

Ω

S̄T(Ē−E) dΩ−
∫

Γu

(S̄n)T(u− u0)dΓ + Πext(u) (51)

where

Πext(u) = −
∫

Ω

uTFb dΩ−
∫

Γt

uTFt dΓt (52)

and u, Ē, and S̄ are the unknown displacement, strain, and stress variables, E is the Green-Lagrange strain
de�ned in (30), Fb and Ft are the body force and traction, which act on the continuum body Ω and the
traction boundary Γσ, respectively. For simplicity, we assume that the loads Fb and Ft are independent of
the body deformation.

The Hu-Washizu variational theorem can be simply written as

ΠHW (u, Ē, S̄) = Stationary. (53)

5.2 The Hellinger-Reissner variational theorem

For Saint-Venant Kirchho� materials, if we let the displacement boundary condition and the stress-strain
relation be satis�ed strongly, i.e.,

u = u0 on Γu (54)

S̄ = CĒ on Ω (55)

where C is the elasticity matrix and u0 is the prescribed displacement on boundary Γu then the Hu-Washizu
functional can be written as

ΠHR(u, Ē) =

∫
Ω

(
ETCĒ− 1

2
ĒTCĒ− uTFb

)
dΩ−

∫
Γt

uTFtdΓt. (56)

This is often called a modi�ed Hellinger-Reissner functional as the strains, instead of stresses, are taken as
the extra unknowns. At this point, (56) no longer depends on unknown stresses S̄ since they have been
eliminated through the strong satisfaction of the constitutive law in (55).

The Hellinger-Reissner variational theorem can be written as

ΠHR(u, Ē) = Stationary. (57)
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Invoking the stationarity of ΠHR(u, Ē) results in

δΠHR(u, δu, Ē, δĒ) =

∫
Ω

δETCĒ− δĒTC(Ē−E)dΩ

−
∫

Ω

δuTFbdΩ−
∫

Γt

δuTFtdΓt = 0. (58)

The linearization of the above stationary conditions yields

L[δΠHR(u, δu, Ē, δĒ)] := δΠHR(u, δu, Ē, δĒ) + ∆δΠHR(∆u, δu,∆Ē, δĒ) = 0 (59)

where

∆δΠHR(∆u, δu,∆Ē, δĒ) =

∫
Ω

−δĒTC∆Ē + δĒTC∆E + δETC∆Ē︸ ︷︷ ︸
material sti�ness

+ ∆δETCĒ−∆δĒTC(Ē−E)︸ ︷︷ ︸
geometric sti�ness

dΩ. (60)

Note that we de�ned the Green-Lagrange strain in terms of covariant components in Section 3. Therefore,
the elasticity matrix C should be represented in contravariant components, which can be obtained from the
components de�ned in the Cartesian coordinate system through a matrix transformation, see [56] for details.

6 Discretization of the mixed variational form

6.1 Strain variable discretization

To eliminate membrane and shear locking, the assumed strains are de�ned as

Ē =

[
ε̄+ ξ3κ
γ̄

]
(61)

where the bending strains, κ, are not modi�ed. If membrane locking is negligible, the membrane strain
components, ε, can also remain unchanged, i.e., ε̄ = ε. The assumed membrane and shear strains are
interpolated with carefully chosen lower-order bases as

ε̄ =

ε̄1ε̄2
ε̄3

 =


∑na

A=1N
p−1,q
A ε̄A1∑nb

B=1N
p,q−1
B ε̄B2∑nc

C=1N
p−1,q−1
C ε̄C3

 , γ̄ =

[
γ̄1

γ̄2

]
=

∑na

A=1N
p−1,q
A γ̄A1∑nb

B=1N
p,q−1
B γ̄B2

 , (62)

where na, nb and nc are the basis function numbers of the selectively reduced lower-order bases {Np−1,q
A }na

A=1,

{Np,q−1
B }nb

B=1, and {Np−1,q−1
C }nc

C=1 with p and q the degrees of the primal basis in ξ and η directions,
respectively. The �rst variation of the assumed strains can be written as

δε̄ =


∑na

A=1N
p−1,q
A δε̄A1∑nb

B=1N
p,q−1
B δε̄B2∑nc

C=1N
p−1,q−1
C δε̄C3

 , δγ̄ =

∑na

A=1N
p−1,q
A δγ̄A1∑nb

B=1N
p,q−1
B δγ̄B2

 , (63)

and the second variations vanish. In this formulation, the assumed strain variables (62) and its variations (63)
are discretized using the same function spaces, which leads to the so-called Bubnov-Galerkin formulation.

This choice of interpolation of the strain variables is inspired by the mixed displacement method [11],
where some derivatives of the original primal basis are used to interpolate di�erent strain components as
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follows,

ε̄ =

ε̄1ε̄2
ε̄3

 =

 ū1,1

ū2,2

ū3,12

 =

np∑
A=1


Np,q
A,1ūA1

Np,q
A,2ūA2

Np,q
A,12ūA3

 , γ̄ =

[
γ̄1

γ̄2

]
=

[
v̄1,1

v̄2,2

]
=

np∑
A=1

Np,q
A,1v̄A1

Np,q
B,2v̄A2

 (64)

where ūi and v̄α are called the mixed displacements, and np is the number of primal basis functions. It
can be easily veri�ed that the spans of the lower-order bases used in (62) are the same as the derivative
spaces utilized in (64) with appropriate constraints given in [11]. These lower-order bases have also been
used in [23] and [25] to release membrane locking for geometrically linear problems. The e�ectiveness of
these interpolation schemes for releasing both shear and membrane locking is demonstrated numerically in
Section 8 for geometrically linear and nonlinear problems. A theoretical exploration of the inf-sup stability
of the resulting discretizations [3, 15] in the regime of higher-order continuous isogeometric shell elements
will not be explored in this paper.

6.2 Matrix formulation

Substituting (30) and (61) into the linearized stationary condition (59) gives∫
Ω

−
[
δε̄+ ξ3δκ

δγ̄

]T
C

[
∆ε̄+ ξ3∆κ

∆γ̄

]
+

[
δε̄+ ξ3δκ

δγ̄

]T
C

[
∆ε+ ξ3∆κ

∆γ

]
+

[
δε+ ξ3δκ

δγ

]T
C

[
∆ε̄+ ξ3∆κ

∆γ̄

]
+

[
∆δε+ ξ3∆δκ

∆δγ

]T
C

[
ε̄+ ξ3κ
γ̄

]
−
[
ξ3∆δκ

0

]T
C

([
ε̄+ ξ3κ
γ̄

]
−
[
ε+ ξ3κ
γ

])
dΩ =

−
∫

Ω

[
δε+ ξ3δκ

δγ

]T
C

[
ε̄+ ξ3κ
γ̄

]
+

[
δε̄+ ξ3δκ

δγ̄

]T
C

([
ε̄+ ξ3κ
γ̄

]
−
[
ε+ ξ3κ
γ

])
dΩ

+

∫
Ω

δuTFbdΩ +

∫
Γt

δuTFtdΓtdΓe. (65)

We de�ne the primal displacement/rotation and assumed strain nodal vectors by

Û =



u1

β1

...
uI
βI
...

unp

βnp


and Ê =

[
Êm

Ês

]
, (66)

respectively, where uI and βI are the displacement and rotation unknowns corresponding to the Ith primal
node, Êm and Ês are the assumed membrane and shear strain nodal vectors associated with the three
di�erent lower-order bases in (62), which are de�ned as

Êm =
[
ε̄11 . . . ε̄I1 . . . ε̄na1 ε̄12 . . . ε̄I2 . . . ε̄nb2 ε̄13 . . . ε̄I3 . . . ε̄nc3

]T
and

Ês =
[
γ̄11 . . . γ̄I1 . . . γ̄na1 γ̄12 . . . γ̄I2 . . . γ̄nb2

]T
,

where ε̄Ii, γ̄Ii are membrane and shear strain unknowns of the Ith assumed strain node of the ith lower-order
basis.
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Inserting the interpolations of the variations of displacement, assumed strains, and Green-Lagrange strain
components (119), (120), and (121) into the linearized stationary condition (65) leads to the linear system
solved at each Newton-Raphson iteration[

Kmat
11 + Kgeom Kmat

12

Kmat
21 Kmat

22

] [
∆Û

∆Ê

]
=

[
F̂ext − F̂bint
−F̂msint

]
, (67)

where the material sti�ness matrices Kmat
αβ are de�ned as

Kmat
11 =

∫
Ω

(Bb)TCBms + (Bb + Bms)TCBb dΩ, (68)

Kmat
12 =

∫
Ω

(Bms)TCB̄ms dΩ, (69)

Kmat
21 =

∫
Ω

(B̄ms)TCBms dΩ, (70)

Kmat
22 =

∫
Ω

−(B̄ms)TCB̄ms dΩ. (71)

Here the superscripts b and ms indicate that the strain-displacement matrices Bb and Bms are derived from
the variations of bending and membrane and shear strains, respectively. These strain-displacement matrices
can be written as

Bb
I =ξ3


NI,1d

hT
,1 x̄hT,1 TI,1

NI,2d
hT
,2 x̄hT,2 TI,2

NI,2d
hT
,1 +NI,1d

hT
,2 x̄hT,1 TI,2 + x̄hT,2 TI,1

0 0

 (72)

and

Bms
I =


NI,1x̄

hT
,1 0

NI,2x̄
hT
,2 0

NI,1x̄
hT
,2 +NI,2x̄

hT
,1 0

NI,1d
hT x̄hT,1 TI

NI,2d
hT x̄hT,2 TI

 . (73)

The strain-displacement matrix B̄ms is derived from the variations of assumed membrane and shear strains
(63). As there are three types of assumed strain nodes, it is written at the element level as

B̄ms
e =



Np−1,q
1 0 0 0 0
...

...
...

...
...

Np−1,q
l 0 0 0 0

0 Np,q−1
1 0 0 0

...
...

...
...

...
0 Np,q−1

m 0 0 0

0 0 Np−1,q−1
1 0 0

...
...

...
...

...
0 0 Np−1,q−1

n 0 0

0 0 0 Np−1,q
1 0

...
...

...
...

...

0 0 0 Np−1,q
l 0

0 0 0 0 Np,q−1
1

...
...

...
...

...
0 0 0 0 Np,q−1

m



T

(74)
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where l, m, and n denote the numbers of the three di�erent strain node types de�ned over the eth element.
The IKth nodal submatrix of the geometric sti�ness matrix Kgeom can be written as

Kgeom
IK =

∫
Ω

Kgeom
IK11

Kgeom
IK12

Kgeom
IK21

Kgeom
IK22

dΩ

where

Kgeom
IK11

=(NI,1NK,1S̄
11 +NI,2NK,2S̄

22 +NI,1NK,2S̄
12 +NI,2NK,1S̄

21)I,

Kgeom
IK12

=ξ3S11NI,1TK,1 + ξ3S22NI,2TK,2 + ξ3S12(NI,1TK,2 +NI,2TK,1) + (S̄13NI,1 + S̄23NI,2)TK ,

Kgeom
IK21

=ξ3S11NK,1T
T
I,1 + ξ3S22NK,2T

T
I,2 + ξ3S12(NK,1T

T
I,2 +NK,2T

T
I,1) + (S̄13NK,1 + S̄23NK,2)TT

I ,

Kgeom
IK22

=ξ3S11m̂ββ
IK,1(x̄h,1) + ξ3S22m̂ββ

IK,2(x̄h,2) + ξ3S12(m̂ββ
IK,1(x̄h,2) + m̂ββ

IK,2(x̄h,1)) + S̄13q̂ββIK(x̄h,1) + S̄23q̂ββIK(x̄h,2).

Here Sij are the components of second Piola-Kirchho� stress S, and S̄ij are the stress components calculated
from the assumed strains, i.e.,

S̄ = CĒ. (75)

The internal force vectors F̂bint and F̂msint are de�ned as

F̂bint =

∫
Ω

(Bms)TS̄ + ξ3(Bb)TS dΩ (76)

F̂msint =

∫
Ω

(B̄ms)T(S− S̄) dΩ. (77)

The external force vector F̂ext is calculated using standard approaches for RM shells [30]. We use numerical
integration through the thickness of the shell. Analytical preintegration can be used if the shifter tensor is
assumed to be the identity [21].

7 Condensation of assumed strain variables

The mixed shell formulation described previously e�ectively alleviates locking as will be shown numerically
in Section 8. However, it can introduce up to �ve additional degrees of freedom per assumed strain node. In
traditional C0 RM shell elements, the assumed strain �elds are discontinuous along element interfaces and
can be easily condensed out at the element level. However, for higher-order smooth shell elements this is
no longer possible and alternative approaches must be employed. We devise an approach based on Bézier
dual basis functions that preserves the sparsity of the resulting sti�ness matrix and accuracy of the original
mixed formulation.

7.1 Strain variable discretization and matrix formulation

We now de�ne the variations of the assumed strains δε̄ and δγ̄ as

δε̄ =
1

h
C−T


∑na

A=1 Ñ
p−1,q
A δε̄A1∑nb

B=1 Ñ
p,q−1
B δε̄B2∑nc

C=1 Ñ
p−1,q−1
C δε̄C3

 , and δγ̄ =
1

h
C−T

∑na

A=1 Ñ
p−1,q
A δγ̄A1∑nb

B=1 Ñ
p,q−1
B δγ̄B2

 , (78)

where Ñp−1,q
A , Ñp,q−1

B and Ñp−1,q−1
C are the Bézier dual bases corresponding to Np−1,q

A , Np,q−1
B and Np−1,q−1

C

de�ned in Section 2.2 and h is the shell thickness. Since the assumed strain variables (62) and its variations
(78) are discretized using di�erent function spaces this is a so-called Petrov-Galerkin formulation.
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In this case, the structure of the resulting linear systems remains the same as (67) where now Kmat
21 and

Kmat
22 are de�ned as

Kmat
21 =

∫
Ω

(B̃ms)TBms dΩ (79)

Kmat
22 =

∫
Ω

−(B̃ms)TB̄ms dΩ (80)

where Bms and B̄ms are the same as those de�ned in Section 6.2, and B̃ms is de�ned at element level as

B̃ms
e =

1

h



Ñp−1,q
1 0 0 0 0
...

...
...

...
...

Ñp−1,q
l 0 0 0 0

0 Ñp,q−1
1 0 0 0

...
...

...
...

...

0 Ñp,q−1
m 0 0 0

0 0 Ñp−1,q−1
1 0 0

...
...

...
...

...

0 0 Ñp−1,q−1
n 0 0

0 0 0 Ñp−1,q
1 0

...
...

...
...

...

0 0 0 Ñp−1,q
l 0

0 0 0 0 Ñp,q−1
1

...
...

...
...

...

0 0 0 0 Ñp,q−1
m



T

. (81)

When calculating Kmat
22 we assume that the basis vectors Gi are constant through the thickness. This

assumption and the biorthogonality condition of the dual basis (11) means that

Kmat
22 =

∫
Ω

−(B̃ms)TB̄ms dΩ = −I. (82)

Therefore, the assumed strain variables can be easily condensed out leading to the linear system(
Kmat

11 + Kmat
12 Kmat

21 + Kgeom
)

∆Û = F̂ext − F̂bint −Kmat
12 F̂msint. (83)

Notice that no inverse matrix is required and the �nal sti�ness matrix

K = Kmat
11 + Kmat

12 Kmat
21 + Kgeom (84)

remains sparse with a slighly wider bandwidth. Figure 3 shows the sparsity patterns for the sti�ness matrices
computed for the Scordelis-Lo roof problem in Section 8.3. Note that as the assumed strains and their
variations are discretized with di�erent basis functions, we have (Kmat

12 )T 6= Kmat
21 . As a consequence, the

resulting sti�ness matrix (84) is nonsymmetric which can slightly increase the computational cost in solving
the system of equations compared to a case with a symmetric sti�ness matrix having the same size and
sparsity pattern.

The geometric sti�ness matrix Kgeom, the external force vector F̂ext, and the internal force vector F̂bint
remain unchanged and are computed as described in Section 6.2. However, the internal force vector F̂msint is
now de�ned as

F̂msint =

∫
Ω

(B̃ms)TC−1(S− S̄)dΩ. (85)

Within each Newton-Raphson iteration the assumed strain unknowns ∆Êms can be recovered as

∆Êms = Kmat
21 ∆Û + F̂msint. (86)
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(a) Displacement-based formulation. (b) Mixed Bubnov-Galerkin formulation.

(c) Mixed Petrov-Galerkin formulation.

Figure 3: Sti�ness matrix sparsity patterns for the Scordelis-Lo roof problem in Section 8.3, 64 elements per
side. (a) a standard displacement-based RM formulation, (b) the mixed Bubnov-Galerkin formulation with
strain variables condensed out, (c) the proposed Petrov-Galerkin formulation with strain variables condensed
out.
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8 Numerical examples

We now evaluate the performance of the proposed mixed shell formulations on several benchmark problems.
Several di�erent shell elements are compared:

� KL: Kirchho�-Love shell [35].

� RMC: Reissner-Mindlin shell with continuous rotations of the director [27, 19, 21].

� RMD: Reissner-Mindlin shell with discrete rotations of the director [20, 19, 21].

� RMCMD: Reissner-Mindlin shell with continuous rotations of the director, based on the mixed dis-
placement method [11].

� RMCM: Reissner-Mindlin shell with continuous rotations of the director, based on the mixed Bubnov-
Galerkin formulation.

� RMDM: Reissner-Mindlin shell with discrete rotations of the director, based on the mixed Bubnov-
Galerkin formulation.

� RMCMP: Reissner-Mindlin shell with continuous rotations of the director, based on the mixed Petrov-

Galerkin formulation.

8.1 Cylindrical shell subject to transverse loading in the radial direction

Figure 4 shows the schematic for a cylindrical shell subject to transverse loading in the radial direction. This
model has a radius R = 10, a width b = 1, and a varying thickness. Young's modulus and Poisson's ratio
are E = 1000 and ν = 0, respectively. The cylindrical shell is clamped at one end and subject to a traction,
qx = 0.1t3, at the other end. An analytical solution based on Bernoulli beam theory gives an approximate
value of 0.942 for the radial displacement at the free end. This problem is modeled with quadratic and cubic
NURBS of maximal smoothness. The initial mesh has 2× 1 elements, and uniform re�nement is applied in
the circumferential direction.

Figure 5 shows the convergence of the maximum tip displacement ux with varying slendernesses R
t =

100, 1000, and 10000. As can be seen, for p = 2, 3 and all slendernesses, the standard isogeometric shells
RMC and RMD lock severely for the coarse meshes when compared with the proposed RMCM shell, which
nearly obtains the reference solution with the initial mesh. The locking increases as the slenderness increases.
For p = 2, RMC and RMD shells are comparable. For p = 3, and R

t = 100 the RMD shell achieves better
results than the RMC shell as shown in Figure 5a. This can be attributed to the fact that the error from
the discrete rotation of the director softens the system response [21]. However, this improvement disappears
as the slenderness increases as shown in Figure 5b and c.

Figure 6 compares the convergence behaviors of the maximum tip displacement ux for RMCM, RMDM
and RMCMP shells. As can be seen, The RMDM shell is less accurate than the RMCM shell. This is
because, once locking has been alleviated, the inaccuracy inherent in the discrete rotation of the director
manifests itself. This inaccuracy worsens with increasing degree [21]. The proposed RMCMP shell obtains
comparable results as the RMCM shell but with strain variables condensed out. It can be also seen that for
a �xed degree, these three types shells do not lock as the slenderness increases. This is not the case for the
standard RMC and RMD shells as shown in Figure 5, which lock severely as the slenderness increases. This
demonstrates that these mixed formulations eliminate membrane and shear locking e�ectively.

The proposed mixed shell formulations also accurately capture stresses. This is in stark contrast to
standard isogeometric shells. Figure 7 shows the computed membrane force nφφ for quadratic RMC, RMCM
and RMCMP shell elements. The analytical solution of the membrane force is 0 at the free end and −0.1t3 at
the �xed end. As can be seen, with 10 elements the membrane force for the RMC shell oscillates signi�cantly,
especially for increasing slenderness, and the maximum and minimum forces are several orders of magnitude
o� from the analytical solution. In contrast, the proposed RMCM and RMCMP shells achieve almost the
same smooth and accurate results.
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R

qxx

yz
φ

Figure 4: A cylindrical shell subject to transverse loading in the radial direction.

8.2 Clamped square plate subject to a uniformly distributed load

We now analyze a clamped square plate subject to a uniform distributed load as shown in Figure 8a. The
square plate has length L = 10, Young's modulus E = 1000, and Poisson's ratio ν = 0.3. The thickness t
is varied to give a slenderness ratio L

t = 100, 1000 and 10000. The distributed load is set to q = t3. The
maximum displacement at the center of the plate is monitored. The exact solution is umax = −0.138 for all
thicknesses [53]. Due to symmetry, only one quarter of the geometry is modeled.

To demonstrate the behavior of our approach for a distorted mesh con�guration, the initial mesh consists
of only one quadratic element with skewed control net as shown in Figure 8b. Figure 9 shows the behavior of
the RMC, RMCM and RMCMP shells for increasing slenderness. It can be seen that the standard RMC shell
locks signi�cantly in all cases, especially for lower-order basis functions and thin geometry. The RMCM and
RMCMP shell show superior behavior for all orders p = 2, 3 and slendernesses L

t = 100, 1000, 10000 in terms
of accuracy per degree of freedom. Note that as the shell gets thinner, the mixed shell formulations start to
converge slower with coarse meshes, which is mainly due to the more severe boundary layer phenomenon [18].

The contour plots of transverse shear stress σxz at the midsurface with
L
t = 100 and 16× 16 maximally

smooth quadratic elements are shown in Figure 10b, c and d. A numerical reference using 64×64 maximally
smooth p = 5 RMC shell elements is shown in Figure 10a. As can be seen, signi�cant oscillations occur
for the standard RMC shell with 16× 16 quadratic elements. The superiority of the RMCM and RMCMP
elements in representing the shear stress is clear and the RMCMP shell obtains even better stress than the
RMCM shell. Note that to show the symmetric distribution of the stress the whole geometry is modeled
here and the initial mesh adopts the same skewed control net con�guration as shown in Figure 8b but with
full geometry size.
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Figure 5: A cylindrical shell modeled with RMC, RMD and RMCM elements, convergence of maximum tip
displacement ux with increasing slenderness R

t = 100, 1000, 10000 and degree p = 2, 3.
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Figure 6: A cylindrical shell modeled with RMCM, RMDM and RMCMP elements, convergence of maximum
tip displacement ux with increasing slenderness R

t = 100, 1000, 10000 and degree p = 2, 3.
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(a) RMC, R
t
= 100 (b) RMCM, R

t
= 100 (c) RMCMP, R

t
= 100

(d) RMC, R
t
= 1000 (e) RMCM, R
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= 1000

(g) RMC, R
t
= 10000 (h) RMCM, R
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= 10000 (i) RMCMP, R
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= 10000

Figure 7: A cylindrical shell, membrane force nφφ for a quadratic C1 cylindrical shell consisting of 10 × 1
RMC, RMCM and RMCMP elements, respectively. Exact membrane force: max = 0; min = −0.1t3.
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(a) Schematic. (b) Initial quadratic element with skewed control net.

Figure 8: A clamped square plate subject to a uniform distributed load.
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Figure 9: A clamped square plate under distributed load, maximum de�ection uz for slendernesses
L
t = 100,

1000, 10000.
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(a) RMC, element # = 64× 64, p = 5. (b) RMC, element # = 16× 16, p = 2.

(c) RMCM, element # = 16× 16, p = 2. (d) RMCMP, element # = 16× 16, p = 2.

Figure 10: A clamped square plate under distributed load, shear stress σxz at the midsurface,
L
t = 100.
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8.3 Scordelis-Lo roof

The Scordelis-Lo roof problem is part of the shell obstacle course [42] and tests a shell element's ability to
handle both membrane and bending modes. An 80° arc of a cylinder with radius, R = 25, length, L = 50,
and thickness, t = 0.25 or 0.025 is supported on each end by a rigid diaphragm. It is loaded with its own
weight qz = 90. The material has Young's Modulus, E = 4.32 × 108, and Poisson's ratio, ν = 0. Figure 11
shows the problem setup.

x

yz

rigid diagram

θ = 40◦

L

R

qz

Figure 11: Schematic for the Scordelis-Lo roof problem.
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Figure 12: Scordelis-Lo roof, convergence of the maximum displacement, p = 2, 3, maximally smooth ele-
ments.

The maximum displacement occurs on the free edge at L2 . There have been multiple theoretical solutions
reported in the literature. The usual FEA solution converges to 0.3024 for t = 0.25 [42], and 32 for t = 0.025
[25]. Figure 12 shows the convergence behavior of the maximum displacement in terms of degrees of freedom,
where only one quarter of the geometry is modeled due to symmetry. The proposed RMCM shell converges
faster than the standard RMC shells for all cases in terms of the number of degrees of freedom as shown in
Figure 12a and b. Again, RMCMP shell achieves the same results as RMCM shell but with less degrees of
freedom as strain variables are condensed out.

23



The proposed shell elements are not only superior in terms of displacement but also in their ability to
represent stress �elds. A numerical reference for the membrane force nφφ computed using maximally smooth
p = 5 isogeometric KL shell elements [35] with 50 × 50 control points for the whole model is shown in
Figure 13a for t = 0.25. Figure 13b to d show the membrane force nφφ for t = 0.25, p = 2. As can be seen,
with 17×17 maximally smooth control points both RMCM and RMCMP obtain accurate and smooth stress
resultants while the stresses computed using standard RMC shells oscillate signi�cantly.

(a) KL, pts=50× 50, p = 5. (b) RMC, pts=17× 17, p = 2.

(c) RMCM, pts=17× 17, p = 2. (d) RMCMP, pts=17× 17, p = 2.

Figure 13: Scordelis-Lo roof, membrane force nφφ, t = 0.25, maximally smooth elements.

8.4 Partly clamped hyperbolic paraboloid

The partly clamped hyperbolic paraboloid problem, proposed in [5], is a widely used test to assess the
ability of a shell formulation to address locking in bending-dominated situations [18, 25, 14]. As illustrated
in Figure 14, the geometry of the middle surface of the shell is de�ned by

z = x2 − y2, (x, y) ∈ {(x, y) | −L/2 ≤ x ≤ L/2, −L/2 ≤ y ≤ L/2, L = 1}.

The shell has various thicknesses, t = 0.01, 0.001 and 0.0001, young's modulus, E = 2× 1011, and Poisson's
ratio, ν = 0.3. The structure is clamped along the edge at x = −L/2 and is subjected to its self-weight
qz = 8000t per unit area. Due to its symmetry about xz-plane, only half of the model is analyzed.

Figure 17 gives the convergence of the vertical displacement, uz, at point A. As no analytical solution
exists for this problem, slightly di�erent numerical reference solutions are usually used for di�erent shell
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Figure 14: Schematic for the partly clamped hyperbolic paraboloid problem.

Table 1: Clamped hyperbolic paraboloid, reference solutions of displacement and strain energy.

t urefz Enerref

0.01 −9.3429932× 10−5 8.4015268× 10−3

0.001 −6.3973228× 10−3 5.5097099× 10−2

0.0001 −5.3045439× 10−3 4.4985775× 10−2

formulations [5, 25, 14]. In this work, we obtain the numerical reference solutions urefz at point A, listed
in Table 1, with the standard RMC shell and a very �ne mesh, i.e., 127 × 63 maximally smooth quintic
elements. The relative error between the reference solutions given here and those given in [25] are less than
1�. As can be seen, for both p = 2 and 3, the standard RMC shell locks severely as the thickness decreases.
The RMCM and RMCMP shells, in contrast, converge much faster than the RMC shell despite it getting
slower as the shell gets thinner. The slowdown of convergence for the mixed shells is mainly due to the fact
that, as the thickness decreases the energy tends to concentrate to the diagonal lines, it then becomes more
challenging to capture the complicated deformation [25].

Figure 16 shows the membrane force n11 with di�erent shell formulations, where the subscript 11 of n11

denotes that the membrane force is along the base vector A1 direction de�ned in (15). Figure 16a gives a
numerical reference solution with 64× 32 maximally smooth quintic elements. As can be seen, with 2× 20
quadratic elements, the RMCM and RMCMP shells achieve smooth membrane force which are similar to the
reference solution while the standard RMC shell shows oscillation. Note that the minimum values obtained
by the RMCM and RMCMP shells are di�erent from the reference solution due to the stress concentration
happening at the lower left corner.

To better assess the ability of the proposed shell formulations, we also investigate the convergence of the
global strain energy in the same manner as studied in [5, 25, 14]. Again, the reference solutions Enerref

are listed in Table 1, which are obtained with the same element type and mesh size as the displacement
reference solution urefz . The convergence curves of the relative energy error for p = 2 and various thicknesses
are plotted in Figure 17 in log-scale. As can be seen, the convergence rates for RMCM and RMCMP shells
do not deteriorate as the shell goes thinner even though the error increases due to the more complicated
deformation states as mentioned previously. In contrast, the convergence rate decreases obviously for the
standard RMC shell with t = 0.0001. It is also noticed that even with comparable convergence rates, the
proposed RMCMP shell achieves smaller error than the mixed RMCM shell for t = 0.001 and 0.0001, which
further demonstrates the e�ectiveness of the proposed RMCMP shell in alleviating locking.
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(c) t = 0.0001.

Figure 15: Hyperbolic paraboloid, convergence of the displacement uz at point A, p = 2, 3, maximally
smooth elements.
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(a) RMC, element #=64× 32, p = 5. (b) RMC, element #=20× 20, p = 2.

(c) RMCM, element #=20× 20, p = 2. (d) RMCMP, element #20× 20, p = 2.

Figure 16: Hyperbolic paraboloid shell, membrane force n11, t = 0.01, maximally smooth elements.
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8.5 Straight cantilever shell subjected to end moment

In this section, we study the roll-up of the straight cantilever beam (modeled as a shell) shown in Figure 18.
This problem is widely used to test the ability of a shell element to handle large rotations. The beam has
a length of L = 12, width b = 1, and thickness t = 0.1. It is �xed on one end and subjected to a uniform
line moment m = M/b on the free end. The material has Young's modulus, E = 1.2 × 106, and Poisson's
ratio, ν = 0.3. The analytical solutions of the displacements from the classical �exural theory at the free
end are given by ux(M) = [sin( MM0

)M0

M − 1]L and uz(M) = [1− cos( MM0
)]M0

M with M0 = EI
L = 25

3 [51] which
hold for the inextensible shells used in this work. The cantilever beam should roll up into an exact circle for
M = 2πM0 with a free end rotation of θ = 2π. These analytical solutions

In this test, the moment M = 2πM0 is applied in 10 load steps and the convergence of the free end
rotation for maximally smooth B-splines of degree p = 2 and 3 are shown in Figure 19. The initial mesh
consists of 4× 1 elements. As can be seen, the proposed RMCM shell element obtains 2π with very coarse
meshes for both p = 2 and 3. The RMCMP shell obtains the same results as the RMCM shell but with
less degrees of freedom. However, the RMDM shell element does not converge for the coarse mesh and even
behaves worse than the standard RMC and RMD shells. This can be attributed to the inaccuracies inherent
in the discrete rotations for coarse meshes and large rotations. For 10 load steps, the RMC shell requires 64
quadratic elements to converge to a circle, as shown in Figure 20a, while the RMCM and RMCMP shells only
need 5 quadratic elements and 7 load steps to achieve a circle, as shown in Figure 20b and c, respectively.
The total Newton-Raphson iteration counts and the iteration behavior of the last load step for the di�erent
shell formulations are shown in Table 2. The RMCM and RMCMP shells achieve a circle with only 51 and
50 total Newton-Raphson iterations, respectively, compared to 110 iterations for the RMC shell. Note that
for RMC shell, the convergence process shows oscillation at iterations 6, 8 and 10 of the last load step, which
is due to that the mesh is still not re�ned enough. If more re�ned mesh is used, the oscillation disappears.
Figure 21 shows the de�ection at each load step for the RMCMP shell, which tracks the analytical solution
very well. This example demonstrates the superior behavior of the proposed RMCM and RMCMP shells in
handling large rotations.

L
M

b

L = 12
b = 1
t = 0.1
E = 1.2× 106

ν = 0

Figure 18: A cantilever shell subjected to an end moment.
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Figure 19: Cantilever beam subjected to an end moment, convergence of the endpoint rotation, p = 2, 3,
maximally smooth elements, 10 load steps.

(a) RMC, element #= 64× 1, load steps = 10.

(b) RMCM, element # = 5× 1, load steps = 7. (c) RMCMP, element #= 5× 1, load steps = 7.

Figure 20: Deformed con�gurations at each load step for di�erent shell elements, p = 2.
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Figure 21: Cantilever beam subjected to an end moment, load-de�ection, 5 quadratic maximally smooth
elements, 7 load steps.

Table 2: Straight cantilever beam subjected to an end moment: Newton-Raphson iteration behavior of the
last load step for RMC, RMCM and RMCMP shells, p = 2. A residual norm of 1 × 108 is used as the
tolerance for convergence.

Last load
step iterations

Norm of the global residual vector
RMC RMCM RMCMP

1 3.0229989 4.3185699 4.3185699
2 1.7221171e+04 1.0305822e+03 1.2936436e+02
3 2.6892551e+03 4.5473223e+02 2.8142369e+01
4 1.2615671e+02 2.3987376e+02 6.8581274e+01
5 1.7478106 1.0344525e+02 8.4403519
6 24.185435 2.0999644 1.0011283e-01
7 0.0609893 1.0275647e-02 7.1974155e-03
8 2.5605655 7.1578287e-07 2.9250887e-07
9 9.0084745e-04 3.1091745e-11 2.1394618e-13
10 0.0023499
11 1.2197837e-09

Load step # 10 7 7
Total iteration # 110 51 50

Element # 64× 1 5× 1 5× 1

8.6 Hemispherical shell with hole

The hemispherical shell problem tests a shell element's ability to represent combined membrane and bending
modes [41]. The geometry is a hemisphere with radius, R = 10, thickness, t = 0.04, and an 18° hole as
shown in Figure 22. The Young's modulus is E = 6.825 × 107 and the Poisson's ratio is ν = 0.3. The
hemisphere is loaded with four point loads, P = 200, on the equator with alternating sign, which results
in large deformations and rotations. The reference solution of the radial displacement uy at point B is
-5.86799 [21]. Only one quarter of the hemisphere is modeled due to symmetry.

Figure 23 shows the convergence of the radial displacement at point B for di�erent formulations. The
load is applied with 10 equal load steps for p = 2 and 3, respectively. In this case, the proposed RMCMP
shell converges quickly to the reference solution for both p = 2 and 3, which is faster than the RMCM shell.
Again, the proposed RMCM shell achieved identical results as the RMCMD shell. To achieve the relative
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Figure 22: Schematic for the hemispherical shell problem.
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Figure 23: Hemispherical shell with hole. Convergence of the displacement at point B, p = 2, 3, maximally
smooth elements and 10 load steps.

31



(a) RMC, element # = 28× 28. (b) RMCMD, element # = 9× 9.

(c) RMCM, element # = 9× 9. (d) RMCMP, element # = 7× 7.

Figure 24: Hemispherical shell with hole. Deformed con�gurations for RMC, RMCMD, RMCM and RMCMP
shells with maximally smooth, quadratic elements and 10 load steps, |uB − uref|/|uref| < 5% at point B.

displacement error |uB − uref|/|uref| < 5% at point B, the proposed RMCMP shell requires only 7 × 7
quadratic elements compared to the standard RMC shell which requires 28× 28 elements. The RMCM and
RMCMD shell both need 9× 9 elements. The deformed con�gurations of the whole hemisphere are created
by mirroring the quarter deformed con�gurations through the symmetric planes, as shown in Figure 24.
The Newton-Raphson iteration information for the shell formulations is listed in Table 3. As can be seen,
even though RMCM and RMCMP shells require far fewer elements than the RMC shell, they only require
60 total iterations which is less than the 89 iterations required by the RMC shell. RMCMD shell requires
more total iterations than the RMCM shell in this case. This is due to the di�erence between the selectively
reduced lower order bases in RMCM and the lower order spaces constructed by taking derivatives of the
primal basis in RMCMD. Even though these two bases span the same function space, the individual basis
functions di�er, which will a�ect the results slightly.
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Table 3: Hemispherical shell with hole: Newton-Raphson iteration behavior for RMC, RMCMD, RMCM
and RMCMP shells with 10 load steps, p = 2. A residual norm of 1 × 107 is used as the tolerance for
convergence.

Last load
step iterations

Norm of the global residual vector
RMC RMCMD RMCM RMCMP

1 1.4142136e+1 1.4142136e+1 1.4142136e+1 1.4142136e+1
2 1.3777805e+4 3.4425023e+3 4.1793789e+2 3.8894389e+1
3 3.4436270e+1 2.9080795e+1 1.5350666 3.4801747e-2
4 1.3510823e+1 1.1198335e-2 1.7726484e-4 2.1305495e-4
5 5.8204885e-1 4.1729117e-4 7.3943139e-7 1.0146852e-6
6 7.0268520e-3 1.4014187e-5 5.2659190e-9 5.6220310e-9
7 2.0814432e-7 4.8116486e-7
8 2.8150056e-8 1.7065087e-8

Total iteration # 89 77 60 60
Element # 28× 28 9× 9 9× 9 7× 7

9 Conclusions

We introduce a mixed isogeometric Reissner-Mindlin shell formulation, based on the Hellinger-Reissner
variational principle, to overcome both shear and membrane locking and stress oscillations in higher-order
continuous elements. In addition to the displacements and rotations, the membrane and shear strains are
chosen as unknown �elds, which are interpolated with carefully selected lower-order bases.

We propose an e�cient technique to condense out the assumed strain variables in the mixed shell formu-
lation. The approach leverages a Bézier dual basis and preserves the sparsity of the global sti�ness matrix.
Both linear and nonlinear numerical examples show that the condensation approach actually improves the
accuracy of the mixed approach on a per degree of freedom basis.

We investigate the accuracy of the mixed shell formulations for both the continuous and discrete rotation
concepts. Numerical examples demonstrate that the continuous and discrete rotation concepts achieve similar
accuracy for standard RM shells with lower-order bases and small deformations. However, once the shear
and membrane locking is removed by the proposed formulation, the discrete rotation concept is less accurate,
and even unstable for large deformation problems. This can be attributed to the inaccuracies inherent in
projecting the continuous surface normal to the control points, which do not interpolate the surface. We
also propose a more computationally e�cient scheme to update the current director. Future work includes
the study of the stability of the proposed shell formulation and its extension to material nonlinear problems.
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A Equivalent update schemes of the current director

In [19, 27, 21], the current director and its derivatives are updated as

di = RiD and di,α = Ri
,αD + RiD,α, (87)

where the total rotation tensor Ri is updated in a multiplicative manner as

Ri = ∆RRi−1, (88)

and its derivatives are updated as

Ri
,α = ∆R,αRi−1 + ∆RRi−1

,α . (89)

In this way, Ri and Ri
,α are required to be calculated and stored at each Newton-Raphson iteration.

In fact, if substituting (88) and (89) into (87), we have

di = RiD = ∆RRi−1D = ∆Rdi−1 (90)

and

di,α = Ri
,αD + RiD,α

= (∆R,αRi−1 + ∆RRi−1
,α )D + ∆RRi−1D,α

= ∆R,αRi−1D + ∆R(Ri−1
,α D + Ri−1D,α)

= ∆R,αdi−1 + ∆Rdi−1
,α . (91)

(90) and (91) prove that the proposed director update scheme in (40) and (43) is equivalent to (87). However,
it only requires di and di,α are calculated and stored at every Newton-Raphson iteration.

B Discretization of the current director based on the continuous

rotation concept

In this section and Appendixes C and D, detailed derivations of the discretized director and strain components
are given. These derivations are necessary for understanding and implementing the presented geometrically
nonlinear RM shell formulations in this work. We note that similar notations and procedures as [27, 19, 21]
are used. However, as we de�ne the Green-Lagrange strain components in terms of the contravariant basis
vectors in Section 3, the derivatives of di�erent quantities in the following derivations are with respect to
the parametric coordinates rather than the local Cartesian coordinates as in [19, 21]. Interested readers are
referred to [27, 19, 21] for extra details.

The �rst variation of d can be written as

δd = WTδω, W = skewd (92)

and the derivatives can be written as

δd,α = WT
,αδω + WTδω,α, W,α = skewd,α. (93)

The second variation of d can be written as

h ·∆δd = δωTM(h)∆ω, (94)
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where

M(h) =
1

2
(d⊗ h + h⊗ d)− (d · h)I (95)

and h is an arbitrary vector.
The derivatives of ∆δd can be written as

h ·∆δd,α = δωT
,αM(h)∆ω + δωTM,α(h)∆ω + δωTM(h)∆ω,α, (96)

where

M(h),α =
1

2
(d,α ⊗ h + h⊗ d,α)− (d,α · h)I. (97)

The increment of the axial vector and its derivatives are discretized as

∆ωh =

np∑
I

NI∆ωI =

np∑
I

NIT3I∆βI and ∆ωh,α =

np∑
I

NI,α∆ωI =

np∑
I

NI,αT3I∆βI (98)

where

T3I =

{
[a1I a2I ] for nodes in the smooth regions

I3×3 for nodes along kinks
(99)

aαI = ∆R(∆ωI)a
i−1
αI , ai−1

αI is the current nodal basis vectors (100)

∆ωI = T3I∆βI . (101)

Note that the matrix T3I in (99) is reduced to the identity along kinks, where the entire rotation vector
∆ωI is used for the Ith node in the interpolation. In this work, we update the nodal basis vectors in the
way as shown in (100) rather than that given in [19, 21] as

aαI = ∆R(∆ωI)R
i−1
I AαI . (102)

In this way, we only need to store the current nodal basis vectors aiαI rather than the nodal rotation matrix Ri
I

at each Newton-Raphson and the initial nodal basis vectors AαI . Therefore, the storage and computational
cost can be reduced as explained similarly for the update of the current director at quadrature points in
Section 4.1.

The �rst variation of the director and its derivatives are discretized as

δdh = WhTδωh =

np∑
I=1

TIδβI (103)

δdh,α =

np∑
I=1

TI,αδβI (104)

where

TI = WhTNIT3I (105)

TI,α = [WhT
,α NI + WhTNI,α]T3I . (106)

The second variation of the director and its derivatives are discretized as

h ·∆δdh =

np∑
I=1

np∑
K=1

δβT
I TT

3INIM
h(h)NKT3KδβK =

np∑
I=1

np∑
K=1

δβT
I q̂

ββ
IK(h)δβK (107)

h ·∆δdh,α =

np∑
I=1

np∑
K=1

δβT
I TT

3I [NI,αMh(h)NK +NIM
h
,α(h)NK +NIM

h(h)NK,α]T3KδβK

=

np∑
I=1

np∑
K=1

δβT
I m̂

ββ
IK,α(h)δβK (108)
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where

q̂ββIK(h) = TT
3INIM

h(h)NKT3K (109)

m̂ββ
IK,α(h) = TT

3I [NI,αMh(h)NK +NIM
h
,α(h)NK +NIM

h(h)NK,α]T3K (110)

and Mh(h) and Mh
,α(h) are calculated by inserting interpolated values of hh and hh,α into (95) and (97),

respectively.

C Discretization of the current director based on the discrete ro-

tation concept

The �rst variation of the director can be discretized as

δdh =
∑
I

NIδdI and δdh,α =
∑
I

NI,αδdI (111)

where

δdI = WT
I δωI . (112)

Following (103) to (104), we have that

δdh =

np∑
I=1

TIδβI (113)

δdh,α =

np∑
I=1

TI,αδβI (114)

where

TI = NIW
T
I T3I (115)

TI,α = NI,αWT
I T3I . (116)

The second variation of the director can be discretized as

∆δdh =
∑
I

NI∆δdI and ∆δdh,α =
∑
I

NI,α∆δdI (117)

where ∆δdI is calculated at each node using (94) as

h ·∆δdI = δwI ·MI(h)∆wI = δωT
I MI(h)∆ωI . (118)

D Discretization of the strain

Substituting δdh and δdh,α, computed with B or C, into (35) gives the discretized �rst variation of the strains
as

δεh =

np∑
I=1

 NI,1x̄
hT
,1

NI,2x̄
hT
,2

NI,1x̄
hT
,2 +NI,2x̄

hT
,1

 δuI
δκh =

np∑
I=1

 NI,1d
hT
,1 x̄hT,1 TI,1

NI,2d
hT
,2 x̄hT,2 TI,2

NI,2d
hT
,1 +NI,1d

hT
,2 x̄hT,1 TI,2 + x̄hT,2 TI,1

[δuI
δβI

]

δγh =

np∑
I=1

[
NI,1d

hT x̄hT,1 TI

NI,2d
hT x̄hT,2 TI

] [
δuI
δβI

]
.

(119)
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The second variation of the membrane strains (36) are independent of d so their discretization can be written
as

∆δεhαβ =
1

2
(δx̄h,α ·∆x̄h,β + δx̄h,β ·∆x̄h,α) =

np∑
I=1

np∑
K=1

1

2
δuTI (NI,αNK,β +NI,βNK,α)I∆uK . (120)

The bending strains (37) contain both �rst and second variation information. To simplify the derivation,
their discretization can be written in two parts as

∆δκhαβ =
1

2
(δx̄h,α ·∆dh,β + δx̄h,β ·∆dh,α + δdh,α ·∆x̄h,β + δdh,β ·∆x̄h,α + x̄h,α ·∆δdh,β + x̄h,β ·∆δdh,α)

= ∆δκ̂hαβ︸ ︷︷ ︸
�rst variation

+ ∆δ ˆ̂κhαβ︸ ︷︷ ︸
second variation

(121)

where

∆δκ̂hαβ =
1

2
(δx̄h,α ·∆dh,β + δx̄h,β ·∆dh,α + δdh,α ·∆x̄h,β + δdh,β ·∆x̄h,α) (122)

and

∆δ ˆ̂κhαβ =
1

2
(x̄h,α ·∆δdh,β + x̄h,β ·∆δdh,α). (123)

Substituting δdh and δdh,α derived in B or C into (122) leads to the discretized variation of the strains

∆δκ̂hαβ =
1

2

np∑
I=1

np∑
K=1

{δuTI [NI,αTK,β +NI,βTK,α]∆βK + δβTI [NK,βTT
I,α +NK,αTT

I,β ]∆uK}.

For the continuous rotation concept substituting (108) into (123) results in

∆δ ˆ̂καβ =
1

2

np∑
I=1

np∑
K=1

δβTI (m̂ββ
IK,β + m̂ββ

IK,α)∆βK .

For the discrete rotation concept substituting the second equation of (117) into (123) results in

∆δ ˆ̂κhαβ =
1

2
(x̄h,α ·∆δdh,β + x̄h,β ·∆δdh,α)

=
1

2

np∑
I=1

(x̄h,αNI,β + x̄h,βNI,α) ·∆δdI

=
1

2

np∑
I=1

δωT
I MI(x̄

h
,αNI,β + x̄h,βNI,α)∆ωI

=
1

2

np∑
I=1

δβTI TT
3IMI(x̄

h
,αNI,β + x̄h,βNI,α)T3I∆βI

=
1

2

np∑
I=1

np∑
K=1

δIKδβ
T
I TT

3KMI(x̄
h
,αNI,β + x̄h,βNI,α)T3I∆βK

=
1

2

np∑
I=1

np∑
K=1

δβTI (m̂ββ
IK,β(x̄h,α) + m̂ββ

IK,α(x̄h,β))∆βK

where

m̂ββ
IK,α(x̄h,α) = δIKNI,αTT

3IMI(x̄
h
,α)T3I . (124)
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Similarly, we can get the shear part as

∆δγhα = δx̄h,α ·∆dh + δdh ·∆x̄h,α + x̄h,α ·∆δdh

= ∆δγ̂α︸ ︷︷ ︸
�rst variation

+ ∆δˆ̂γα︸ ︷︷ ︸
second variation

(125)

where

∆δγ̂hα =

np∑
I

np∑
J

δuTI NI,αTK∆βK + δβTI NK,αTT
I ∆uK

and

∆δˆ̂γα =

np∑
I

np∑
J

δβTI q̂
ββ
IK(x̄h,α)∆βK

where q̂ββIK(x̄,α) is de�ned in (109) for the continuous rotation of the director and

q̂ββIK(x̄,α) = δIKNIT
T
3IMI(x̄,α)T3I (126)

for the discrete rotation of the director.
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