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Abstract

In this paper, we present an algorithm to construct enriched Bézier dual basis functions that can reproduce higher-
order polynomials. Our construction is unique in that it is based on Bézier extraction and projection, allowing it to
be used for tensor product and unstructured polynomial spline spaces, is well-conditioned, and is quadrature-free.
When used as a basis for dual mortar methods, optimal approximations are achieved for both second- and fourth-order
problems. In the context of fourth-order problems, both C0 and C1 continuity constraints must be applied at each
intersection. We develop a novel geometry-independent C1 continuity constraint that also preserves the sparsity of the
coupled problem. The performance of the proposed formulation is verified through several challenging second- and
fourth-order problems.

1 Introduction
Isogeometric analysis, introduced by Hughes et al. [35], leverages computer aided design (CAD) representations

directly in finite element analysis. It has been shown that this approach can alleviate the model preparation burden
of going from a CAD design to an analysis model and improve overall solution accuracy and robustness [3, 20, 21].
Additionally, the higher-order smoothness inherent in CAD basis functions make it possible to solve higher-order partial
differential equations such as the biharmonic equation [39, 38], the Kirchhoff-Love shell problem [41, 40, 42] and the
Cahn-Hilliard equation [28, 9] directly without resorting to mixed discretization schemes.

CAD models are often built from collections of non-uniform rational B-splines (NURBS). Adjacent NURBS
patches often have inconsistent knot layouts, different parameterizations, and may not even be physically connected.
Additionally, trimming curves [43, 58] are often employed to further simplify the design process and to extend the range
of objects that can be modeled by NURBS at the expense of further complicating the underlying parameterization of
the object. While usually not an issue from a design perspective, these inconsistencies in the NURBS patch layout,
including trimming, must be accommodated in the isogeometric model to achieve accurate simulation results. As shown
in Figure 1, two primary approaches are often employed. First, the exact trimmed CADmodel, shown in Figure 1 in the
middle, is used directly in the simulation [58]. To accomplish this requires additional algorithms for handling cut cells
and the weak imposition of boundary conditions and may result in reduced solution accuracy and robustness. Second,
the CAD model is reparameterized [71], as shown in Figure 1 on the right, into a watertight spline representation like
multi-patch NURBS, subdivision surfaces [55], or T-splines [62] which can then be used as a basis for analysis directly.
The reparameterization process often results in more accurate and robust simulation results but is only semi-automatic
using prevailing approaches. In both cases, existing techniques are primarily surface-based due to the predominance of
surface-based CAD descriptions.

1.1 Key contributions
In the present work, we assume that some form of reparameterization has been performed (see Figure 1 on the right)

on a CAD model to either remove some or all of the trimming curves and/or to restructure the underlying patch layout
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A geometry Trimmed model Reparameterized model

Figure 1: A geometry and two parameterization strategies: trimming and reparameterization.

to improve the parameterization (e.g., reduce degree, distortion, complexity, etc.). However, we relax the requirement
that adjacent patches share a consistent parameterization along shared edges and instead introduce a dual mortaring
along the shared interfaces. Relaxing this requirement can simplify the reparameterization process leading to more
robust approaches [70]. Our key contributions include:

• The Bézier dual basis, introduced in [72], is enriched to be able to reproduce polynomials of any degree at the
expense of a slight increase in the size of the underlying support.

• The polynomial enrichment is performed in a quadrature-free manner, resulting in well-conditioned dual basis
functions, where the condition number is independent of mesh size.

• The approach is written entirely in terms of Bézier extraction, which means it can be applied equally to both
tensor product and unstructured spline representations.

• For fourth-order problems, we introduce a geometry-independent C1 continuity constraint. In other words, the
constraint only depends on parametric information. Throughout this paper we call this C1 constraint a dual
mortar suitable constraint.

1.2 Prior work
The design and analysis communities have made significant progress in the representation and manipulation of

complex CAD surfaces with nontrivial topology. In the design community, some of the earliest efforts resulted in the so-
called subdvision surfaces [55, 15, 47] which allow for the construction of smooth spline bases over unstructuredmeshes.
However, from an analysis perspective, subdivision surfaces are non-polynomial and require expensive numerical
integration schemes [49] to achieve accuracy. Despite these challenges, Loop [52] and Catmull-Clark [66, 67, 14]
subdivisions have been utilized in isogeometric analysis to generate and analyze smooth surfaces and solids.

T-splines [62], also introduced in the design community, are similar to subdivision surfaces in that they can be
built over unstructured meshes but they also allow for local refinement. T-spline-based isogeometric analysis was first
proposed in [2] and the approximation properties of so-called analysis-suitable T-splines was studied in [19]. T-splines
have been widely applied in different areas including fracture [65], boundary element analysis [61], fluid-structure
interaction [4] and shells [6].

The workhorse of modern CAD is the boundary representation (BREP). This term most often refers to a collection
of NURBS patches together with trimming data that defines how a patch is to be trimmed down and topological data
giving the connection between patches. A BREP in which all the patches are untrimmed is often referred to as a
multi-patch NURBS object.

One of the most difficult aspects of building smooth CAD models from multi-patch NURBS objects is achieving
smoothness and approximability in the neighborhood of extraordinary points [64]. In a surface, an extraordinary point
is a vertex in the mesh which has more or less than four adjacent edges. The concept of geometric smoothness has been
used extensively in the construction of smooth surfaces over extraordinary points [26] and some of these concepts have
been utilized in the context of isogeometric analysis [61, 53, 54].

In [39], geometric smoothness was also used to construct C1 smooth functions on two-patch planar domains and
multi-patch planar domains [38]. A possible issue with this approach is so-calledC1 locking [18]. In [16], a local degree
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elevation approach is proposed to overcome this form of locking and is applied to the construction of geometrically
continuous functions on smooth surfaces.

From the analysis perspective, the pointwise satisfaction of continuity constraints between adjacent patches is often
unnecessarily rigorous. A reasonable approximation can be achieved even if these constraints are applied in a variational
setting. For this reason, various variational approaches have been proposed to weakly couple disconnected patches,
including the Lagrange multiplier method [25, 31, 33, 11], the penalty method [40, 1], the discontinuous Galerkin
method [57, 50, 32] and the mortar method [7, 5, 68, 8, 72, 68].

The mortar method, first introduced by Bernardi [7], considers a constrained solution space and gives rise to
a positive definite variational problem. While the discontinuous Galerkin method requires modifications to weak
forms, the mortar method modifies function spaces, leaving weak forms untouched. Mortar methods, in the context
of isogeometric analysis, have been studied in [13] and later extended to address the C1 continuity constraint for
Kirchhoff-Love shells [59] and Cn continuity coupling [24]. Recently, a hybrid approach, which combines mortar and
penalty methods, was developed for fourth-order problems in a multi-patch setting [34]. In [68], dual basis functions
are used to discretize the Lagrange multiplier space, which further simplifies the mortar formulation.

Dual functionals for splines were first introduced by de Boor and Fix [23] to develop a quasi-interpolation operator
for splines. Subsequently, de Boor presented dual basis functions in [22]. Thomas et al. [63] introduced the Bézier
projection operator as an efficient replacement for global L2 projection. The dual basis induced by the Bézier projection
operator has been utilized in [48, 72] to alleviate locking and for patch coupling. In the finite element framework, the
construction of dual basis functions with optimal approximation power was first presented in [51]. In [45], Lamichhane
and Wohlmuth [44] introduced locally supported and continuous dual basis functions for quadratic finite elements.
Later on, Lamichhane and Wohlmuth developed a class of dual basis functions that have the same support as the
corresponding nodal finite element basis and possess adequate approximation power.

Recently, Wunderlich et al. [69] extended the dual mortar formulation in [51] to isogeometric analysis. However,
the construction algorithm in [51] calls the assembly routine twice – once to construct a dual basis with minimal support
and a second time to the enrich the dual basis with polynomial completeness. Moreover, the condition number of the
series of linear problems solved in [51] grows at the rate p as the mesh is refined.

The remainder of the paper is organized as follows: In Section 2, required notation is established including closed
forms for the Gramian of the Bernstein basis, its inverse, and the inner product between the Bernstein basis and
polynomials. Bézier extraction is also presented. Section 3 discusses the mathematical requirements for enriched dual
basis functions with optimal approximation power. A quadrature-free algorithm for building enriched Bézier dual basis
functions is then presented in Section 4. An overview of the dual mortar formulation is given in Section 5. In Section 6,
we describe how the enriched Bézier dual basis can be incorporated into a dual mortar formulation for second-order
problems. A dual mortar suitable C1 constraint and corresponding dual mortar formulation for fourth-order problems
are then described in Section 7. Section 8 demonstrates the utility of the approach for several second- and fourth-order
numerical benchmarks. Conclusions are drawn in Section 9.

2 Spline fundamentals

2.1 The univariate Bernstein basis
The ith univariate Bernstein basis function of degree p on the unit interval [0,1] is defined by

Bp
i (ξ) =

(
p
i

)
ξi (1− ξ)p−i (1)

where the binomial coefficient
(
p
i

)
=

p!
i!(p− i)!

, 0 ≤ i ≤ p. The polynomial degree superscript will be omitted when
unnecessary. Matrix-vector notation will be used throughout, with bold fonts indicating matrices and vectors, e.g., the
vector form of a set of Bernstein basis functions is denoted by

Bp (ξ) =



Bp
0 (ξ)

Bp
1 (ξ)
...

Bp
p (ξ)



. (2)
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The Bernstein basis of degree p spans the space of polynomials of degree p. The Gramian matrix Gp = [Gp
i, j] can be

given as an integral

Gp
i, j =

∫ 1

0
Bp
i (ξ)Bp

j (ξ)dξ, (3)

or in closed form (see [27]) as

Gp
i, j =

(
p
i

) (
p
j

)
(2p+1)

( 2p
i+j

) . (4)

The inverse of the Gramian matrix is given in closed form (see [37]) as

[Gp
i, j]
−1 =

(−1)i+j(
p
i

) (
p
j

) min(i, j)∑
k=0

(
p+ k +1

p− i

) (
p− k
p− i

) (
p+ k +1

p− j

) (
p− k
p− j

)
. (5)

A Bernstein basis defined over an arbitrary interval
[
ξα, ξβ

]
can be evaluated as

Bp
i (

ξ − ξα
ξβ − ξα

), ξ ∈
[
ξα, ξβ

]
. (6)

The corresponding scaled Gramian and inverse can be obtained by multiplying and dividing the matrices in Eq. (4) and
Eq. (5) by the scaling factor (ξβ − ξα), respectively. For the sake of simplicity, we use the same symbols to represent the
Bernstein basis defined on different intervals. A closed form expression for the L2 inner product between the Bernstein
basis function Bp

i (ξ) and a polynomial ξ j is given by∫ 1

0
Bp
i (ξ)ξ jdξ =

(
p
i

)
(i+ j)!(p− i)!

(p+ j +1)!
. (7)

2.2 The univariate B-spline basis
A set of univariate B-spline basis functions of degree p can be uniquely defined by a non-decreasing knot vector

Ξ = {ξi }n+pi=0 , where n is the number of B-spline basis functions. In this work, we only use open knot vectors where the
first and last values in the knot vector is repeated p+1 times i.e., ξ0 = ξ1 = · · · = ξp and ξn = ξn+1 = · · · = ξn+p defined
over the interval [0,1]. The value of the ith B-spline basis function associated with the knot vector Ξ is recursively
defined using the Cox-de Boor formula

N0
i (ξ) =

{
1 ξi ≤ ξ ≤ ξi+1
0 otherwise (8)

N p
i (ξ) =

ξ − ξi
ξi+p − ξi

N p−1
i (ξ)+

ξi+p+1− ξ

ξi+p+1− ξi+1
N p−1
i+1 (ξ). (9)

Non-uniform rational B-splines (NURBS) are often used to represent conic sections. A NURBS basis function can be
written as

Rp
i (ξ) =

N p
i (ξ)wi

W (ξ)
(10)

where the positive number wi is the weight corresponding to basis function N p
i and

W (ξ) =
∑
j

N p
j (ξ)w j . (11)

2.3 Bézier extraction
Bézier extraction is a technique that is often used to facilitate the incorporation of smooth splines into existing finite

element codes [10, 60]. The Bézier element extraction operator Ce maps a Bernstein basis vector Be defined over an
element Ωe to a corresponding B-spline basis vector N restricted to the same element. In other words,

Ne B N|Ωe = CeBe . (12)
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Figure 2: The Bézier extraction process for a quadratic B-spline basis defined by the knot vector {0,0,0,1/3,2/3,1,1,1}.

In the context of tensor product B-splines, the Bézier extraction operator can be constructed through a knot insertion
algorithm [56]. The inverse of the Bézier element extraction operator Re B [Ce]−1 is called the spline element
reconstruction operator and is used in the construction of the Bézier projection operator (see [63]).

It is possible to interpret Bézier extraction as a global assembly procedure. The B-spline basis vector N of dimension
nN can be represented as

N = ATCB, (13)
where the vector of Bernstein bases over all elements in the mesh is a vector of dimension nB = (p+1)ne given by

B =



B1

B2

...
Bne



(14)

and C is a block nB × nB diagonal matrix with Bézier element extraction operators on the diagonal and the rectangular
assembly operator A is the permutation matrix that maps element degrees of freedom to global degrees of freedom.
The assembly operator A satisfies the following properties:

• Each row of A contains a single unity-valued entry; all other entries are zero.

• Each column of A contains at most p+1 unity-valued entries; all other entries are zero.

• Compact support. The non-zero entries can be associated to no more than p+1 consecutive elements.

• If we consider the column vectors Ai of A, the space span {Ai }
nN−1
i=0 is an nN dimensional subspace of RnB and

{Ai }
nN−1
i=0 are orthogonal, i.e.

Ai ·Aj , 0 ⇐⇒ i = j . (15)

The Bézier extraction process for the quadratic B-spline basis defined by the knot vector {0,0,0,1/3,2/3,1,1,1} is
shown in Fig. 2. The assembly operator A for this example is given by

A =

N0 N1 N2 N3 N4




1 0 0 0 0 N0
0

0 1 0 0 0 N0
1

0 0 1 0 0 N0
2

0 1 0 0 0 N1
0

0 0 1 0 0 N1
1

0 0 0 1 0 N1
2

0 0 1 0 0 N2
0

0 0 0 1 0 N2
1

0 0 0 0 1 N2
2

, (16)

where the highlighted submatrix is the restriction of A onto elements Ω0 and Ω1 and onto the B-spline basis functions
N1 and N2.
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Figure 3: A Bernstein basis (left) and the corresponding dual basis (right) for degree p = 2 defined over the knot vector
{0,0,0,1/3,2/3,1,1,1}. Note that each dual basis function has the same support as the corresponding primal basis
function.

2.4 The tensor product B-spline basis and extraction operator
A common way to extend Bernstein, B-spline, and NURBS basis functions to higher dimensions is by constructing

the tensor product of univariate basis functions. For example, a two-dimensional Bernstein basis of degree p = (pξ, pη )
can be defined as

Bp(ξ, η) = Bpξ (ξ) ⊗Bpη (η). (17)

The Kronecker product of an m× n matrix A and a p× q matrix B is a mp× nq block matrix defined as

A⊗B =



a11B · · · a1nB
...

. . .
...

am1B · · · amnB


. (18)

In the tensor product setting, the Gramian of the Bernstein basis and the Bézier element extraction operator can be
written as

Gp =Gpξ ⊗Gpη , (19)

and
Cp = Cpξ ⊗Cpη , (20)

respectively. Since the inverse of the Kronecker product of matrices is simply the Kronecker product of the inverses,
the inverse of the multivariate Gramian Gp is given by[

Gp]−1
=

[
Gpξ

]−1
⊗

[
Gpη

]−1 , (21)

and the reconstruction matrix

Rp B
[
Cp]−1

=
[
Cpξ

]−1
⊗

[
Cpη

]−1
= Rpξ ⊗Rpη . (22)

2.5 Dual basis functions
2.5.1 Bernstein dual basis functions

For a Bernstein basis B, a dual basis B̂ can be formulated by simply using the inverse Gramian as

B̂ :=G−1B. (23)

A graphical depiction of a Bernstein basis and the corresponding dual basis is shown in Figure 3. Importantly, the
Bernstein dual basis is locally supported and each dual basis has the same support as the corresponding primal basis
function, i.e., supp B̂i = supp Bi . Additionally, the space spanned by the dual basis (denoted by B) is the same as the
space spanned by the primal Bernstein basis (denoted by B̂).
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2.5.2 B-spline dual basis functions

For a B-spline basis N, a dual basis N̂ can be formulated abstractly as

〈N̂i,Nj〉Ω :=
∫
Ω

N̂iNjdΩ = δi j . (24)

We denote the spans of N and N̂ by N ,N̂ ⊂ B, respectively. We can also introduce a pair of quasi-interpolation
operators

INu =
∑
i

〈N̂i,u〉ΩNi , and IN̂u =
∑
i

〈Ni,u〉Ω N̂i, (25)

where both IN and I
N̂

are projection operators, i.e., for all u ∈ N , v ∈ N̂ , INu = u and I
N̂
v = v.

The construction of a B-spline dual basis with the same properties as the Bernstein dual basis, i.e., compact support
and polynomial completeness, is challenging. A general B-spline dual basis construction procedure can be written in
terms of Bézier extraction.

Lemma 1. N̂ ⊂ B is dual to N ⊂ B if and only if

N̂ =WTRTG−1B =WTRT B̂, (26)

where the weighted assembly matrix WT is a pseudo-inverse of A, i.e., WTA = I.

Proof. Given a basis vector in the form of Equation (26), its inner product with the spline basis vector is given by

〈N̂,NT 〉Ω =WTRT 〈B̂,BT 〉ΩCTA = I. (27)

On the other hand, we assume that N̂ is dual to N. With the help of a quasi-interpolation operator IBu =
∑

i〈B̂i,u〉ΩBi

in B, we can rewrite the basis vector N̂ in terms of B̂ as

N̂ = W̃T B̂, with W̃i, j = 〈B̂i, N̂j〉Ω. (28)

Hence, one can rewrite N̂ in the form of Equation (26), with W = CW̃ and WTA = I. �

We can now see that the construction of a compactly supported dual basis can be simplified to finding a set of
banded vectors {Wi }

nN−1
i=0 such that

Wi ·Aj = δi j . (29)

The support size of a dual basis constructed from Equation (26) is determined by the bandwidth of W. The weighting
scheme [63], proposed for Bézier projection, has been adopted to construct W for the Bézier dual basis in [48, 72]. The
Bézier dual basis has compact support and can be used to reduce locking [48, 29], and as a dual mortaring strategy for
elasticity problems [72].

A dual basis function constructed with Bézier projection is show in Figure 4c for the quadratic B-spline shown
in Figure 4a. Note that the Bézier dual basis function has the same compact support as the primal B-spline basis
function. For comparison, a global dual basis function constructed by inverting the B-spline Gramian matrix is shown
in Figure 4b. Notice that the global dual basis function has global support.

3 The approximation power of dual bases
In most cases, a locally constructed quasi-interpolation operator IN possesses optimal approximation power.

However, without special care, a locally constructed dual quasi-interpolation operator I
N̂

possesses suboptimal ap-
proximation power. In fact, for any degree it usually provides an approximation accuracy of only O(h). This is due to
the fact that the dual basis underlying I

N̂
often lacks polynomial completeness. To demonstrate this, we approximate

the global Legendre polynomials using the Bézier dual basis constructed with Bézier projection. Figure 5 shows the
results for a degree three dual basis over a two element domain. There are significant discrepancies between the dual
basis approximations and the corresponding polynomials for all Legendre polynomials except the constant function.

In addition to the application of the dual basis as a local functional for the quasi-interpolation operator IN , the
dual basis is also widely used to solve constrained finite element problems. The advantage of using a dual basis as the
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(a)

(b)

(c)

Figure 4: A comparison of a quadratic C1 B-spline basis function (a) and the corresponding global dual basis function
(b) and the Bézier dual basis function constructed with Bézier projection (c).

Lagrange multiplier is that the degrees of freedom associated with the multiplier can be locally condensed out leading
to sparse, positive-definite linear systems.

However, the best finite element approximation of the Lagrange multiplier method is governed by the approximation
power of the Lagrange multiplier. This means that, when a conventional dual basis is used to define the Lagrange
multiplier space, the approximation power of the Lagrange multiplier does not improve as the polynomial degree is
increased.

3.1 Theoretical motivation
In this section, we discuss the theoretical properties that a dual basis must satisfy to improve the approximation

power to a given order.

Property 1. (global idempotence) The dual quasi-interpolation operator I
N̂
preserves polynomials of degree q on the

entire domain, i.e.,
I
N̂

p = p, ∀p ∈ Pq (Ω). (30)

Property 2. (compact support) Each dual basis function N̂i is supported by at most m connected elements and
supp Ni ⊂ supp N̂i .

Property 3. (local stability) The restriction of the dual quasi-interpolation operator I
N̂

on Ωe is bounded, i.e.,

‖I
N̂

u‖Hk (Ωe ) ≤ Cst ‖u‖Hk (Ω̂e ), (31)

where Cst is a constant independent of h and will be defined later.
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Figure 5: The Legendre polynomials ( ) and the corresponding best L2 approximations ( ) by degree 3 order
Bézier dual basis functions defined on a two element domain. Bézier dual basis functions can only replicate the constant
function.

From Property 1 and Property 2, we have the following result:

Lemma 2. (local idempotence) For each elementΩe ⊂Ω, there is an extension element Ω̂e comprised of a fixed number
of connected elements such that (

I
N̂

p
)
|Ωe = p, ∀p ∈ Pq (Ω̂e). (32)

Proof. We define

Ω̂e =




⋃e+m−1
i=0 Ωi, e−m+1 < 0⋃ne−1
i=e−m+1Ωi, e+m−1 > ne −1⋃e+m−1
i=e−m+1Ωi, otherwise,

(33)

where ne is the number of elements inΩ. Since each N̂i is supported by at most m connected elements, ifΩe ⊂ supp N̂i ,
then supp N̂i ⊂ Ω̂e and the evaluation 〈Ni, p〉 in (25) can be done in Ω̂e, owing to supp Ni ⊂ supp N̂i . Hence, local
polynomial preservation can be obtained from the global idempotence for polynomials. �

We now state the approximation properties of a polynomial space P, the proof of which can be found in [12].

Lemma 3. (Bramble-Hilbert) LetΩ be star-shaped and Qqu be the Taylor polynomial of order q of u ∈ Hq+1(Ω), then

|u−Qqu|Hk (Ω) ≤ Cbhhq+1−k |u|Hq+1 (Ω), k = {0,1, . . .,q+1} , (34)

where h is the diameter of Ω and Cbh is a constant independent of h.

Using the Bramble-Hilbert lemma, local idempotence, and local stability, we can state the convergence behavior of
the dual quasi-interpolation operator I

N̂
.

Theorem 1. Let k and m be integer indices with 0 ≤ k ≤ m ≤ q+1 and u ∈ Hm(Ω̂e). Then for 0 ≤ k ≤ m, we have

‖u−I
N̂

u‖Hk (Ωe ) ≤ Chm−k ‖u‖Hm (Ω̂e ), (35)

where C is a constant independent of h.

Proof. ∀p ∈ Pq (Ω̂e), we have

‖u−I
N̂

u‖Hk (Ωe ) ≤ ‖u− p‖Hk (Ωe ) + ‖p−IN̂u‖Hk (Ωe )

= ‖u− p‖Hk (Ωe ) + ‖IN̂ (p−u)‖Hk (Ωe )

≤ (1+Cst )‖u− p‖Hk (Ω̂e ),

(36)

by choosing p =Qqu, we have

‖u−I
N̂

u‖Hk (Ωe ) ≤ (1+Cst )‖u−Qqu‖Hk (Ω̂e ) ≤ Cbh (1+Cst )hm−k ‖u‖Hm (Ω̂e ) . (37)

�

Hence, in order for the dual quasi-interpolation operator I
N̂

to converge at a given rate t, I
N̂

must preserve
polynomials on the entire domain up to degree t −1. In addition, the compact support and local stability requirements
must be satisfied. In the next section, we will construct a dual basis that satisfies Property 1 and explain how the
construction procedure ensures the satisfaction of Property 2 and Property 3.
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4 Embedding polynomials into the dual basis function space
We now describe how to construct a set of enriched dual basis functions which will endow I

N̂
with polynomial

reproduction up to a given degree. The construction is a two-step procedure:

1. For a given assembly matrix A, we find a set of sparse vectors {Wini
i }

nN−1
i=0 such that Wini

i ·Aj = δi j . Its matrix
form Wini will be taken to be the initial guess for the assembly matrix W of the desired dual basis.

2. The column vectors of Wini are then modified by vectors {Wmod
i }

nN−1
i=0 which come from the null space of

span {Ai }
nN−1
i=0 until polynomial reproduction is fulfilled. Note that this modification will maintain the biorthog-

onal relation between {Wi }
nN−1
i=0 and {Ai }

nN−1
i=0 where

Wi =Wini
i +Wmod

i . (38)

4.1 An orthonormal basis for the space RnB

To facilitate the construction of the enriched dual basis, we build a set of orthonormal vectors which form a basis
for RnB . Each orthonormal vector will have minimal support, where the support of a vector is taken to be the distance
between the first and last nonzero entry. Since the column vectors Ai of A are orthogonal to each other, a natural choice
for this basis is given by the set of vectors comprising all of the normalized {Ai }

nN−1
i=0 , denoted by {Āi }

nN−1
i=0 , and the

vectors which span the null space of span {Ai }
nN−1
i=0 , denoted by {A⊥i }

nB−nN−1
i=0 . Note that the nonzero entries of any

{Ai }
nN−1
i=0 are unity-valued. In addition, each row of A contains one unity-valued entry.
The vectors {A⊥i }

nB−nN−1
i=0 can be found by constructing vectors which are orthonormal to every vector in {Āi }

nN−1
i=0

from Rni , where ni is the number of nonzero entries in Āi . Note that each A⊥i can be used to construct a function in B
as

Ñi =
[
A⊥i

]T
CB. (39)

Since {Āi }
nN−1
i=0 and {A⊥i }

nB−nN−1
i=0 span the space RnB , {Ni }

nN−1
i=0 and {Ñi }

nB−nN−1
i=0 span the space B. Algorithm 1 can

be used to efficiently construct the basis vectors {A⊥i }
nB−nN−1
i=0 .

Algorithm 1:An algorithm to compute {A⊥i }
nB−nN−1
i=0 with minimum support such that {{Āi }

nN−1
i=0 , {A⊥i }

nB−nN−1
i=0 }

spans RnB .
Input : {Ai }

nN−1
i=0

Output : A set of orthonormal basis vectors {A⊥i }
nB−nN−1
i=0 for the null space of span {Ai }

nN−1
i=0

1 j = 0;
2 Initialize {A⊥i }

nB−nN−1
i=0 with zero vectors of size nB;

3 for i = 0,1, . . .,nN −1 do
4 nz = the number of nonzero entries of Ai;
5 if nz > 1 then
6 for k = 1, . . .,nz−1 do
7 Map each entry of [1, . . .,1︸ ︷︷ ︸

k

,−k] to A⊥j according to the indices of the nonzero entries of Ai;

8 normalize A⊥j by A⊥j =
A⊥j
|A⊥j |

;

9 j = j +1;
10 end
11 end
12 end

For example, using the assembly matrix A shown in (16) as input, we can construct the following set of basis vectors

10



with Algorithm 1:

{


1
0
0
0
0
0
0
0
0



,



0
1/
√

2
0

1/
√

2
0
0
0
0
0



,



0
0

1/
√

3
0

1/
√

3
0

1/
√

3
0
0



,



0
0
0
0
0

1/
√

2
0

1/
√

2
0



,



0
0
0
0
0
0
0
0
1

︸                                       ︷︷                                       ︸
{Āi }

nN −1
i=0

,



0
1/
√

2
0

−1/
√

2
0
0
0
0
0



,



0
0

1/
√

2
0

−1/
√

2
0
0
0
0



,



0
0

1/
√

6
0

1/
√

6
0

−2/
√

6
0
0



,



0
0
0
0
0

1/
√

2
0

−1/
√

2
0

︸                                               ︷︷                                               ︸
{A⊥i }

nB−nN −1
i=0

}
. (40)

4.2 Constructing an initial guess Wini
i

An initial guess Wini
i for W can be constructed simply as

Wini
i = Ai/ni, (41)

where ni is the number of nonzero entries in Ai . As will be seen in the next section, this initial guess is critical for
finding an appropriate Wmod with the desired polynomial reproduction property.

4.3 Polynomial reproduction
We now establish an appropriateWmod such that the quasi-interpolation operatorI

N̂
reproduces a polynomial vector

P =
[
1, ξ, . . ., ξq

]T (q ≤ p). In other words,
I
N̂

(P) = P. (42)

Since both the dual basis function space N̂ and the polynomial space are subspaces of the piecewise Bernstein space
X, Equation (42) can be verified through the variational problem

〈v,I
N̂

(PT )〉Ω = 〈v,PT 〉Ω, ∀v ∈ X. (43)

Replacing I
N̂

in Equation (43) by its definition (Equation (25)) and expressing v in Bernstein form, we have

〈B, N̂T 〉Ω〈N,PT 〉Ω = 〈B,PT 〉Ω

RW〈N,PT 〉Ω = 〈B,PT 〉Ω

Wini〈N,PT 〉Ω+Wmod〈N,PT 〉Ω = C〈B,PT 〉Ω

(44)

where the vector form of the B-spline basis N may be replaced by its Bézier extraction form, i.e.,

WiniATC〈B,PT 〉Ω+WmodATC〈B,PT 〉Ω = C〈B,PT 〉Ω. (45)

Using the initial guess defined in Equation (41) we have

WiniAT = Ā(Ā)T , (46)

where Ā is the matrix form of {Āi }
nN−1
i=0 . The operator Ā(Ā)T : RnB → span{Āi }

nN−1
i=0 is an l2-projection operator for

any vector in RnB . Hence, owing to the direct sum decompostion

RnB = span{Āi }
nN−1
i=0 ⊕ span{A⊥i }

nB−nN−1
i=0 . (47)

Equation (45) is equivalent to

WiniATC〈B,PT 〉Ω+WmodATC〈B,PT 〉Ω = Ā(Ā)TC〈B,PT 〉Ω+A⊥(A⊥)TC〈B,PT 〉Ω, (48)
WmodATC〈B,PT 〉Ω = A⊥(A⊥)TC〈B,PT 〉Ω, (49)

where A⊥ is the matrix form of {A⊥i }
nB−nN−1
i=0 , or(

A⊥i
)T

Wmod〈N,PT 〉Ω =
(
A⊥i

)T
C〈B,PT 〉Ω = 〈Ñi,PT 〉Ω, i ∈ {0,1, . . .,nB − nN −1} . (50)
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Remark 1. Obviously, A⊥(A⊥)T : RnB → span{A⊥i }
nB−nN−1
i=0 is an l2-projection operator in RnB with unity norm

‖A⊥A⊥T ‖ = 1. Additionally, vectors {Wmod
i }

nN−1
i=0 ∈ span{A⊥i }

nB−nN−1
i=0 , which ensures that the modification made by

Wmod will not influence the biorthogonal relation between W and A.

We now develop an efficient algorithm to compute a modification matrix Wmod that satisfies Equation (50). The
resulting modification matrix will be as banded as possible and the zero entries in Wmod will remain zero in W. In
other words, there are no new nonzero entries introduced by the sum of Wmod and Wini.

Algorithm 2: An algorithm to construct Wmod.
Input : {A⊥i }

nB−nN−1
i=0 , polynomial degree q

Output : Wmod

1 Initialize P =
[
1, ξ, . . ., ξq

]T ;
2 Initialize Wmod = 0nB×nN ;
3 Assemble the matrix C〈B,PT 〉Ω, 〈N,PT 〉Ω may then be obtained via the assembly operator A;
4 for i = 0,1, . . .,nB − nN −1 do
5 ind = the index of the vector Aind that is used to construct A⊥i in Algorithm 1 (shares the same nonzero

entries as A⊥i );
6 Find q+1 indices

{
n0,n1, . . .,nq

}
that are closest to ind and 0 ≤ n0 ≤ nq ≤ nN −1;

7 Define a square matrix M from the
{
n0,n1, . . .,nq

}
columns of 〈P,NT 〉Ω;

8 Construct a vector F = 〈P, Ñi〉Ω from C〈B,PT 〉Ω and Equation (39);
9 Solve X =M−1F;

10 for j = 0,1, . . .,q do
11 Wmod

n j
=Wmod

n j
+ x jA⊥i ;

12 end
13 end

The procedure for constructing the matrix Wmod is given in Algorithm 2. The functions that are involved in one
iteration of Algorithm 2 for constructing a quadratic dual basis that reproduces quadratic polynomials are shown in
Figure 6. For a vector A⊥i , one can construct a basis function Ñi of X by Equation (39) (Figure 6a). Since A⊥i
is constructed by A11 from Algorithm 1, [〈P,N10〉Ω], [〈P,N11〉Ω] and [〈P,N12〉Ω] are selected to form the matrix M
(highlighted in Figure 6b). A consequence of this approach is that the support of each dual basis function consists of
no more than p+ q+1 elements. Although the support is slightly enlarged through the modification procedure, it still
remains local. The domain involved in the formulation of M is [s, e], highlighted by orange blocks. The polynomials
involved in the formulation of M and F are highlighted in Figure 6c.

4.4 A robust quadrature-free algorithm to construct enriched dual basis functions with
polynomial reproduction

AlthoughAlgorithm2builds locally supported dual basis functions that preserve polynomials, the use of polynomials
defined on the entire domain [0,1] in Equation (42) can be troublesome due to near linear dependencies that can develop
as the mesh is refined. The fundamental issue is illustrated in Figure 6c. To overcome this issue, we can modify the
approach to use localized polynomials in each iteration. Consider the linear map

F =
ξ − s
e− s

: [s, e]→ [0,1] . (51)

Replacing P by P◦F = [1, t ◦F, . . ., tq ◦F]T (see Figure 6d) in Algorithm 2, both spline basis functions and P◦F are
refined as the mesh is refined. As a result, the condition number of M, constructed from P◦F, will not deteriorate as
the mesh is refined. P◦F can be constructed from P through an affine mapping operator T as

P◦F = TP. (52)
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For the example shown in Figure 6, the operator T is given by

T =



1 0 0
−s

e− s
1

e− s
0(

−s
e− s

)2 −2s
(e− s)2

1
(e− s)2



. (53)

Hence, the two linear systems are essentially the same with the operator T acting as a pre-conditioner that improves
the conditioning of the matrix M in Algorithm 2. A general algorithm that computes the affine mapping operator
T : TP◦F1 = P◦F2, with F1 =

ξ−s1
e1−s1

and F2 =
ξ−s2
e2−s2

is given in Algorithm 3.

Algorithm 3: An affine mapping operator T : TP◦F1 = P◦F2.
Input : The highest polynomial degree q, {s1, e1} and {s2, e2}
Output : Matrix form of operator T

1 Compute s =
s2− s1
e1− s1

and e =
e2− s1
e1− s1

;

2 Initialize Tq×q;
3 for j = 0,1, . . .,q do
4 for i = 0,1, . . ., j do
5 Ti, j =

(
j
i

)
(−s) j−i

(e−s) j

6 end
7 end

Another issue with Algorithm 2 is the need to call a matrix assembly routine during the construction of the matrix
C〈B,PT 〉Ω. Leveraging the Bézier element extraction operator, the affine mapping operator, and the closed form
expression of the inner product between Bernstein basis functions and polynomials, we can develop a quadrature-free
formulation for the enriched Bézier dual basis. The procedure is given in Algorithm 4.

Algorithm 4: A quadrature-free algorithm to construct Wmod.
Input : {A⊥i }

nB−nN−1
i=0 , polynomial degree q

Output : Wmod

1 Initialize Wmod = 0nB×nN ;
2 Initialize P =

[
1, ξ, . . ., ξq

]T ;
3 Initialize D =

∫ 1
0 BPT dξ by Equation (7);

4 for i = 0,1, . . .,nB − nN −1 do
5 ind = the index of the vector Aind that is used to construct A⊥i in Algorithm 1 (shares the same nonzero

entries as A⊥i );
6 Find q+1 indices

{
n0,n1, . . .,nq

}
that are the closest to ind and 0 ≤ n0 ≤ nq ≤ nN −1, and identify involved

elements;
7 Construct the block diagonal matrix D̃ from the matrix D. The submatrices on the diagonal correspond to

the inner product between Bernstein basis functions and piecewise polynomials on each element ;
8 Construct T̃ from Algorithm 3 (see Figure 7a), C̃ by restricting the extraction operator C to the involved

elements, Ã by restricting the assembly operator A to the involved elements and B-spline basis functions,
and Ã⊥i by restricting A⊥i to the involved elements (see Figure 7b);

9 Construct M = T̃T D̃T C̃T Ã and F = T̃T D̃T C̃T Ã⊥i ;
10 Solve X =M−1F;
11 for j = 0,1, . . .,q do
12 Wmod

n j
=Wmod

n j
+ x jA⊥i ;

13 end
14 end

13



Ñi

0 1

(a) A Ñi formed by A⊥i constructed from A11 via Algorithm 1.

N11

s e0 1

(b) {Ni }
nq
i=n0

constructed by selected {Wi }
nq
i=n0

, s and e are starting and ending knots of
⋃nq

i=n0
supp Ni .

1

ξ

ξ2

s e0 1

(c) P =
[
1, ξ, ξ2

]T

1

t ◦ F

t2 ◦ F

s e0 1

(d) P◦F =
[
1, t ◦F, t2 ◦F

]T

Figure 6: Illustration of all involved basis functions, polynomials and elements in one iteration of Algorithm 2 and
Algorithm 4.
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T̃

(a) The operator T̃ maps polynomials over each element to polynomials defined over the span [s, e].

C̃

ÃT

[
Ã⊥

i

]T

(b) The block diagonal matrix C̃ maps Bernstein basis functions to discontinuous B-spline basis functions, the assembly operator Ã
constructed by restricting the operatorA to the involved elements and spline basis functions maps discontinuous spline basis functions
to continuous spline basis functions, and the operator Ã⊥i constructed by restricting the operator A⊥i to the involved elements maps
discontinuous spline basis functions to functions Ñi .

Figure 7: Illustration of the behavior of the operators used in Algorithm 4.
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A comparison of the maximum condition numbers of the matrices M produced by Algorithm 2 and Algorithm 4,
respectively, for constructing pth order dual basis functions with pth order polynomial reproduction (q = p) is shown
in Figure 8. As can be seen, the condition number of M from Algorithm 2 grows at the rate p, whereas the condition
number of M from Algorithm 4 is independent of mesh refinement. These results indicate that Algorithm 4 has the
desired robustness.
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Figure 8: The growth of the maximum condition numbers of the matrix M produced by Algorithm 2 and Algorithm 4.

Leveraging Algorithm 2 and Algorithm 4, the enriched dual basis reproduces global polynomials (Property 1),
and the construction process guarantee that the support of each enriched dual basis function consists of no more than
p+ q+1 elements (Property 2). It remains to prove the local stability property (Property 3).

Proof of Property 3.

‖I
N̂

u‖Hk (Ωe ) = ‖
∑
i

〈Ni,u〉Ω N̂i ‖Hk (Ωe )

≤ ‖
∑
i

N̂i ‖Hk (Ωe ) ‖〈N,u〉Ω̂e
‖∞

= ‖N̂T1‖Hk (Ωe ) ‖〈N,u〉Ω̂e
‖∞,

(54)

where 1 is a unit valued vector of the same size as N̂. By rewriting N̂ in its expanded form (26), we have

‖I
N̂

u‖Hk (Ωe ) ≤ ‖
∑
i

Bi ‖Hk (Ωe ) ‖G−TRW1‖∞‖〈N,u〉Ω̂e
‖∞. (55)

From the definition of matrix norms, we then have

‖I
N̂

u‖Hk (Ωe ) ≤ ‖
∑
i

Bi ‖Hk (Ωe ) ‖G−TRW‖∞‖〈N,u〉Ω̂e
‖∞

≤ ‖
∑
i

Bi ‖Hk (Ωe ) ‖G−T ‖∞‖R‖∞‖W‖∞‖〈N,u〉Ω̂e
‖∞.

(56)

Since the Bernstein basis forms a partition of unity over each element, we have that

‖
∑
i

Bi ‖Hk (Ωe ) = ‖1‖Hk (Ωe ) = ‖1‖L2 (Ωe ) =
√

h. (57)
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Let G[0,1] be the Gramian matrix defined on the interval [0,1] and assume ‖G−1
[0,1]‖∞ = Cgi , we have

‖G−T ‖∞ = ‖G−1‖∞ = h−1‖G−1
[0,1]‖∞ = Cgih−1. (58)

Owing to the fact that the Bézier element extraction operators are independent of the geometry and are invariant
under uniform scaling, their norms are independent of the mesh size. In addition, there are a finite number of different
Bézier element extraction operators generated by uniform mesh refinement. Hence, we can assume ‖R‖∞ = Cr .
Meanwhile, thanks to Algorithm 4, the construction of W is geometry and mesh size independent. Hence, we can
assume that ‖W‖∞ = Cw .

Since spline basis functions are non-negative and also form a partition of unity, from Lemma 2 and the Cauchy-
Schwarz inequality, we have that

‖〈N,u〉
Ω̂e
‖∞ ≤ ‖〈1,u〉Ω̂e

‖∞ = |

∫
Ω̂e

udΩ| ≤ ‖1‖L2 (Ω̂e ) ‖u‖L2 (Ω̂e ) =
√

Cmh‖u‖L2 (Ω̂e ) (59)

where Cm is the number of elements involved in Ω̂e. By substituting Equations (57), (58), and (59) into Equation (56),
we have that

‖I
N̂

u‖Hk (Ωe ) ≤ CgiCwCr

√
Cm‖u‖L2 (Ω̂e )

≤ CgiCwCr

√
Cm‖u‖Hk (Ω̂e ) .

(60)

This concludes the proof with Cst = CgiCwCr

√
Cm. �

Hence, the enriched dual basis satisfies all required technical properties and will yield optimal approximations.
Figure 9 gives an example of enriched Bézier dual basis functions of the same primal B-spline basis function with
different polynomial reproduction orders. As can be seen, the approximation power is improved at the expense of the
support size. Due to the tensor product structure of multivariate spline basis functions, the proposed approach can be
directly extended to higher dimensional spaces via tensor product.

5 The dual mortar method for multi-patch coupling

5.1 Domain decomposition
Let Ω be a bounded open domain in R2 with its boundary denoted by ∂Ω. We assume that Ω can be subdivided

into K non-overlapping patches Ωk for 1 ≤ k ≤ K , i.e.,

Ω̄ =

K⋃
k=1
Ω̄k and Ωk

⋂
Ωl = ∅, ∀k , l (61)

where Ω̄k is the closure of Ωk . For simplicity, we only consider the case where the intersection of two patches is
either empty, a single vertex, or the entire edge. We denote the common interface of two neighboring patches as
Γkl = ∂Ωk

⋂
∂Ωl so that Γkl = ∅ if Ωk is not a neighbor of Ωl . We also define the skeleton S =

⋃
k,l∈K,k<l Γkl as the

union of all interfaces in Ω. For each interface Γ ∈ S, one adjacent subdomain is considered to be slave Ωs (Γ) while
the other is considered as master Ωm(Γ). The set V denotes the set of all vertices in Ω. A representative example of a
multi-patch geometry is shown in Figure 10.

For each patch, there exists a bijective geometric mapping from the parametric domain Ω̂k to the physical domain
Ωk , which is defined as

Fk (ξk, ηk ) : Ω̂k 7→Ωk ∈ R
2, (62)

where (ξk, ηk ) are the coordinates of the parametric domain. For simplicity and without loss of generality, we assume
the parametric domain is Ω̂k = [0,1]× [0,1] for all patches.

We can use themappingsFk to create connections between neighboring patches. Due to the fact thatFk is a bijection,
there exists an inverse mapping denoted by F−1

k
. We can construct a bijective transformation on the intersection Γkl as

Ekl = F−1
l ◦Fk, (63)

which maps a parametric point on ∂Ω̂k
⋂
Γ̂kl to a physical point on the intersection Γkl and then to a parametric point

on ∂Ω̂l
⋂
Γ̂kl .
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(a) A cubic B-spline function

(b) Bézier dual basis function (c) Enriched Bézier dual basis function that reproduces lin-
ear functions

(d) Enriched Bézier dual basis function that reproduces
quadratic functions

(e) Enriched Bézier dual basis function that reproduces cu-
bic functions

Figure 9: A cubic B-spline basis function and its corresponding enriched Bézier dual basis functions with different
polynomial reproduction orders.

5.2 The dual mortar formulation
We introduce the dual mortar method in the context of the following abstract variational problem. Let V be a

Hilbert space that satisfies homogeneous Dirichlet boundary conditions on ∂Ω. For a given f ∈ V ′, find u ∈ V such
that

a(u,v) = l (v) ∀v ∈ V, (64)

where a(·, ·) is a bilinear form representing an internal potential energy and l (·) is a linear form representing the external
load.

In order to approximate the solution of the variational problem (64) on the decomposed domain Ω =
⋃K

k=1Ωk ,
each subdomain is discretized with non-conforming NURBS patches. The discrete spaces satisfying the homogeneous
Dirichlet boundary conditions are denoted by {Xk }Kk=1, where Xk is in H1(Ωk ) for second-order problems and H2(Ωk )
for fourth-order problems. However, the function space

X B
{
v ∈ L2(Ω) �� v |Ωk

∈ Xk, l ∈ {1,2, . . .,K }
}

(65)

is not compatible with the variational problem since functions in X are discontinuous across each intersection.
One solution to this problem is to modify the variational formulation (64) so that it becomes a saddle point problem:

Find (u, λ) ∈ X×M, such that



a(u,v)+ b(v, λ) = l (v) ∀v ∈ X,

b(u, µ) = 0 ∀µ ∈M,
(66)
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∂Ω
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Figure 10: An example of a domain decomposition of a triangular domain. The patches are defined on different
parametric domains and are connected via geometric mappings.

where b(·, ·), enforced by the Lagrange multiplier λ, is an abstract bilinear form describing the coupling constraints
between slave and master patches andM is a Lagrange multiplier space defined on the skeleton S. In order to recover
the positive definite variational formulation (64), Bernardi et al. [7] introduced the following constrained space

V B {v ∈ X | b(v, µ) = 0, ∀µ ∈M } . (67)

Then, the saddle point problem (66) is equivalent to the minimization problem (64) on the function space V . The
advantage of using a dual basis with compact support to discretize the Lagrange multiplier space is that the basis
functions of the discretized constrained spaceVh are much easier to construct. In particular, all the basis functions of
Vh have compact support. In general, this is not possible if the basis functions ofVh are constructed using a traditional
Lagrange multiplier space or a globally constructed dual basis. In the latter case, the support of a dual basis function is
the entire slave side of an intersection.

We can rewrite the discretized saddle point problem in matrix form:
[
K BT

B 0

] [
U
Λ

]
=

[
F
0

]
, (68)

where K is the discretized stiffness matrix, F is the discretized external force vector, B is the discretized constraint
matrix, and U is a nodal vector from the discretized displacement field uh ∈ Xh and Λ is a nodal vector from the
discretized Lagrange multiplier field λh ∈Mh . In vector form, the basis functions ofVh can be written as

NV
h

=
[
B⊥

]T
NX

h

, (69)

where NXh are the basis functions of Xh in vector form. All column vectors of B⊥ are linearly independent and they
span the null space of B. We can further partition U as

U =


Us
Um
Uin


, (70)

where the slave nodal vector Us consists of all degrees of freedom that will be eliminated after static condensation,
the master nodal vector Um consists of all degrees of freedom on the intersection that will not be eliminated after
static condensation, and the inactive nodal vector Uin consists of all degrees of freedom that do not contribute to the
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construction of B. The constraint can then be rewritten as

BU =
[
Bs Bm 0

] 

Us
Um
Uin


= 0. (71)

If the Lagrange multiplier space is discretized with dual basis functions and the continuity constraint is dual compatible,
Bs is the identity matrix, and the bandwidth of Bm depends on the support size of the dual basis functions. For a
constraint matrix B, constructed with dual basis functions with compact support, Bm is a sparse matrix with limited
bandwidth, while global dual basis functions lead to a dense Bm. For a B that takes the form (71) with Bs = I, the
corresponding B⊥ can be obtained from

B⊥ =


−Bm 0

I


. (72)

We then have the following linear system to solve

KmortarUmortar =
[
B⊥

]T
KB⊥Umortar =

[
B⊥

]T
F (73)

where the relationship between the mortar displacement nodal vector Umortar and U is given by

U = B⊥Umortar. (74)

With a sparseB⊥ obtained from dual basis functions with compact support, the stiffnessmatrix of themortar formulation
Kmortar will be sparse.

5.3 Vertex modification
For a multi-patch decomposition, at least three patches will meet at a common interior vertex and several interfaces

can share this vertex as a common endpoint. If we discretize the Lagrange multiplier space with a space of the same
dimension as the univariate space formed by taking the trace of the slave space along the interface, we obtain too many
constraints. In this case, nodes in the neighborhood of a vertex may serve as both slave and master nodes and the matrix
B⊥ cannot be formed elegantly using (72). Hence, modifications to the Lagrange multiplier space in the neighborhood
of vertices are needed to relax the overly constrained linear system. Note that these modifications are also commonly
called cross point modifications [13, 69].

In general, these vertex modifications can be achieved by reducing the dimension of the Lagrange multiplier space.
For second order problems, a Lagrange multiplier space of codimension (the difference between the dimension of a
certain space and the dimension of its subspace) 2 of the trace space of the slave side is sufficient to remove redundant
constraints. For fourth order problems, a Lagrange multiplier space of codimension 4 of the trace space of the slave
side is preferred. To construct an enriched dual basis of codimension 2c, we remove the first c and the last c vectors in
{Ai }

nN−1
i=0 , leaving {Ai }

nN−1−c
i=c a nN −2c-dimensional vector space. The orthonormal vector basis of the null space of

span{Ai }
nN−1−c
i=c can be written as {A⊥i }

nB−nN−1
i=0

⋃
{Āi }

c−1
i=0

⋃
{Āi }

nN−1
i=nN−c

. Now, we can construct Wini from {Ai }
nN−1−c
i=c

via (41) and assemble Wmod from {A⊥i }
nB−nN−1
i=0

⋃
{Āi }

c−1
i=0

⋃
{Āi }

nN−1
i=nN−c

with Algorithm 4. The resulting dual basis has
2c fewer dimensions than the original basis and satisfies global idempotence.

6 Dual mortaring for second-order problems
To approximate the solution of second-order variational problem, we use B-spline basis functions {Ni }i∈∪K

k=1Ik
to

discretize each subdomain, where Ik is the index set for domain Ωk . An appropriate indexing is chosen so that there is
no overlap among the index sets {Ik }Kk=1. The discretized test and weighting functions are

uh =
∑

i∈∪K
k=1Ik

UiNi, vh =
∑

i∈∪K
k=1Ik

ViNi . (75)
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Figure 11: The classification of nodes along the interface for a second-order problem over a two-patch domain.

Due to the existence of a first-order weak derivative in the weak form of second-order problems, the constrained
space Vh should weakly satisfy a C0 continuity constraint across each interface Γ ∈ S. Hence, the constrained space
Vh for second-order problems is given by

Vh B
{
uh ∈ Xh ��� b0(uh, µh) = 0, ∀µh ∈ ∪Γ∈SM

h (Γ)
}
, (76)

where
b0(uh, µh) =

∑
Γ∈S

∫
Γ

µh
[
uh

]
Γ

dΓ, (77)

and [·]Γ B ·|Ωs (Γ) − ·|Ωm (Γ) denotes a jump from master to slave. For each intersection Γ ∈ S, the discretized Lagrange
multiplier and its variation inMh (Γ) can be written as

λh =

ns (Γ)−3∑
i=0
Λi N̂i, µh =

ns (Γ)−3∑
i=0

δΛi N̂i (78)

where N̂i and ns (Γ) are dual basis functions and the dimension of the discretized trace space along the slave side of
Γ, respectively. Hence,Mh (Γ) is two dimensions less than the trace space along the slave side of Γ. As a result, in
addition to the interface nodes along the master side of the interface, the first and the last interface nodes along the slave
side also serve as master nodes. An example of the node classification for a two-patch domain is shown in Figure 11.

The structure of the discretized constraint matrix B depends on the index sets {Ik }Kk=1 and the ordering of the
Lagrange multiplier basis functions. We introduce a column-wise permutation matrix Pc as



I1
I2
...

IK



= Pc



Is
Im
Iin


, (79)

where Is is the vector form of all indices of Us, Im is the vector form of all indices of Um, Iin is the vector form of all
indices of Uin and Ii is the vector form of the index set Ii . Then there exists a row-wise permutation matrix Pr such
that the permuted constraint matrix Bp = PrBPc shares the same structure as Equation (71). We may construct B⊥p by
Equation (72). The vector basis of the null space of B can now be obtained from

B⊥ = PcB⊥p . (80)
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The sparsity patterns for the stiffness matrices corresponding to the two-patch Poisson problem using the global dual
basis, the Bézier dual basis and the enriched Bézier dual basis are shown in Figure 12. Note that the matrix constructed
using the global dual basis is denser than the matrix constructed using the Bézier dual basis and the enriched Bézier
dual basis achieves a balance between sparsity and optimal approximation.

(a) (b) (c)

Figure 12: Stiffness matrix sparsity patterns for the coupled linear system using (a) global dual basis, (b) Bézier dual
basis, and (c) enriched Bézier dual basis for a Poisson problem. The stiffness matrices are computed from the two-patch
domain in Figure 11 after three levels of refinements.

7 Dual mortaring for fourth-order problems
Due to the existence of a second-order weak derivative in the weak form of fourth-order problems, the constrained

space Vh should weakly satisfy a C1 continuity constraint across each interface Γ ∈ S. We now develop a set of
constraints to impose C1 continuity across patch boundaries under the dual mortar framework.

x

y ξs

ηs ξm

ηm

ξs
n

ηs

ξs
n

ηsEsm

Ωs Ωm

Slave nodes (I) Slave nodes (II) Master nodes Inactive nodes

Figure 13: The classification of nodes along an interface for 4th-order problems.

To illustrate ourmethod, we consider the construction ofC1 constraints for the two-patch domain shown in Figure 13.
For a function u ∈ C1(Ωs ∪Ωm) with u|Ωs ∈ C1(Ωs), u|Ωm ∈ C1(Ωm) the following two constraints are required across
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the intersection Γ:

[u]Γ = 0, (81a)
[
∂u
∂n

]

Γ

= 0, with n = ns = −nm, (81b)

where nk is the outward normal direction of ∂Ωk . The continuity constraint (81a) can naturally be incorporated into
the framework of the dual mortar formulation. The smoothness constraint (81b), however, can not be directly imposed.
First, the existence of a dual basis for ∂Ni

∂n |Γ is doubtful. Even if these dual basis functions do exist, since they are
biorthogonal to the normal derivative of the basis functions, their formulation will depend on the parameterization of
Γ and the geometric information of Ωs . This complex geometric dependence would destroy the simplicity of the dual
basis formulation. To overcome this issue, we instead propose a smoothness constraint involving parametric derivatives
only.

Lemma 4. Given two differentiable bijective geometric mappings Fs : Ω̂s →Ωs and Fm : Ω̂m→Ωm, a C0-continuous
function u is C1-continuous in the physical domain if and only if

[
∂u
∂ξs

]

Γ

= 0 and
[
∂u
∂ηs

]

Γ

= 0. (82)

Proof. It suffices to consider two neighboring patches as shown in Figure 13. In this configuration, ifu is aC0-continuous
function then [ ∂u∂ηs ]Γ = 0. If u is also C1-continuous, we have

0 =
[
∂u
∂n

]

Γ

=

[
∂u
∂ξs

]

Γ

∂ξs
∂n
+

[
∂u
∂ηs

]

Γ

∂ηs
∂n
=⇒

[
∂u
∂ξs

]

Γ

∂ξs
∂n
= 0 (83)

The fact that Fs is bijective and ∂ηs
∂n = 0 indicates ∂ξs

∂n , 0. Hence,
[
∂u
∂ξs

]
Γ
= 0. On the other hand,




[
∂u
∂ξs

]
Γ
= 0[

∂u
∂ηs

]
Γ
= 0

=⇒

[
∂u
∂n

]

Γ

=

[
∂u
∂ξs

]

Γ

∂ξs
∂n
+

[
∂u
∂ηs

]

Γ

∂ηs
∂n
= 0 (84)

This concludes the proof. �

Hence, the constraints in (82) are equivalent to constraint (81b). On an intersection that is parallel to the ηs direction
in the parametric domain, the constraint

[
∂u
∂ξs

]
Γ
= 0 is utilized while on an intersection that is parallel to the ξs direction

in the parametric domain, the constraint
[
∂u
∂ηs

]
Γ
= 0 is utilized.

Remark 2. In order to demonstrate the advantages of the constraints in (82), we consider the following intergral:∫
Γ

∂Na (ξs, ηs)
∂ξs

N̂j (ηs)dΓ =
∫
Γ

∂Nnξs−2(1)Ni (ηs)

∂ξs
N̂j (ηs)dΓ

=
∂Nnξs−2(1)

∂ξs

∫
Γ

Ni (ηs)N̂j (ηs)dΓ
i, j ∈

{
0,1, . . .,nηs −1

}
(85)

where nξs and nηs are the number of nodes in the ξs and ηs directions of the slave patch, respectively. This integral
is one term that is involved in the discretization of the constraint (81b) and is constructed from a Lagrange multiplier
basis function N̂j (ηs) and an activated basis function of the slave patch Na (ξs, ηs) that is one column away from the
intersection (denoted by the blue triangles in Figure 13). Due to the tensor product structure of multivariate spline
basis functions, the derivative in one direction (ξs for this case) will not influence the contributions coming from other
directions. Hence, the dual basis function of an activated basis function in the constraint

[
∂u
∂ξs

]
Γ
= 0 can be constructed

by the dual basis function of its ηs component divided by
∂Nnξs −2 (1)

∂ξs
.

The only issue now is how to evaluate the derivative of um w.r.t. ξs or ηs directions. This can be done by considering
the following chain rule



∂um

∂ξs
∂um

∂ηs


=



∂ξm
∂ξs

∂ξm
∂ηs

∂ηm
∂ξs

∂ηm
∂ηs



T

·



∂um

∂ξm
∂um

∂ηm


= ∇ET

sm ·



∂um

∂ξm
∂um

∂ηm


. (86)
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Hence, two Lagrange multipliers are needed to apply both a C0 continuity constraint and a C1 continuity constraint.
The constrained spaceVh for fourth-order problems is given by

Vh B


v ∈ Xh

������




b0(uh, µh0 ) = 0, ∀µh0 ∈ ∪Γ∈SM
h
0 (Γ)

b1(uh, µh1 ) = 0, ∀µh1 ∈ ∪Γ∈SM
h
1 (Γ)



, (87)

where

b1(uh, µh1 ) =
∑
Γ∈S

∫
Γ

µh1

[
∂uh

∂ξs

]

Γ

dΓ = 0 if Γ ‖ ηs, or b1(uh, µh1 ) =
∑
Γ∈S

∫
Γ

µh1

[
∂uh

∂ηs

]

Γ

dΓ = 0 if Γ ‖ ξs . (88)

Depending on the orientation of the intersection, the discretized Lagrange multipliers and their variations inMh
0 (Γ)

andMh
1 (Γ) can be written as:

• for the intersection ξs = 0,

λh0 =

ns (Γ)−5∑
i=0
Λ

0
i N̂i, µh0 =

ns (Γ)−5∑
i=0

δΛ0
i N̂i

λh1 =

ns (Γ)−5∑
i=0
Λ

1
i

N̂i

c
, µh1 =

ns (Γ)−5∑
i=0

δΛ1
i

N̂i

c
, c =

∂N s
1 (ξs)
∂ξs

�����ξs=0
,

(89)

• for the intersection ξs = 1,

λh0 =

ns (Γ)−5∑
i=0
Λ

0
i N̂i, µh0 =

ns (Γ)−5∑
i=0

δΛ0
i N̂i

λh1 =

ns (Γ)−5∑
i=0
Λ

1
i

N̂i

c
, µh1 =

ns (Γ)−5∑
i=0

δΛ1
i

N̂i

c
, c =

∂N s
nξs−2(ξs)

∂ξs

������ξs=1

,

(90)

• for the intersection ηs = 0,

λh0 =

ns (Γ)−5∑
i=0
Λ

0
i N̂i, µh0 =

ns (Γ)−5∑
i=0

δΛ0
i N̂i

λh1 =

ns (Γ)−5∑
i=0
Λ

1
i

N̂i

c
, µh1 =

ns (Γ)−5∑
i=0

δΛ1
i

N̂i

c
, c =

∂N s
1 (ηs)
∂ηs

�����ηs=0
,

(91)

• for the intersection ηs = 1,

λh0 =

ns (Γ)−5∑
i=0
Λ

0
i N̂i, µh0 =

ns (Γ)−5∑
i=0

δΛ0
i N̂i

λh1 =

ns (Γ)−5∑
i=0
Λ

1
i

N̂i

c
, µh1 =

ns (Γ)−5∑
i=0

δΛ1
i

N̂i

c
, c =

∂N s
nηs−2(ηs)

∂ηs

������ηs=1

.

(92)

Note that bothMh
0 (Γ) andMh

1 (Γ) are four dimensions less than the trace space along the slave side of Γ. Hence, four
nodes in the neighborhood of each vertex of Ωs are classified as master nodes (see Figure 13).

Due to the presence of two constraints in the definition ofVh , the discretized constraint matrix can be written as

B =
[
B0
B1

]
, (93)

where B0 and B1 correspond to the discretized C0 and C1 constraints. In order to recover the form (71), we subdivide
the slave nodes into two types, as shown in Figure 13:
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I The second closest column of slave basis functions to each intersection Γ ∈ S, whose indices are denoted by the
index set IIs . (denoted by blue triangles)

II The column of slave basis functions on the intersection Γ ∈ S, whose indices are denoted by the index set IIIs .
(denoted by red squares)

Similar to Section 6, we define a column-wise permutation matrix Pc as



I1
I2
...

IK



= Pc



IIs
IIIs
Im
Iin



, (94)

Then, there exist a row-wise permutation matrix Pr such that

Bp = PrBPc =

[
B1

1 B2
1 B3

1 0
0 B2

2 B3
2 0

]
, (95)

where B1
1 is the contribution of the slave nodes (I) in the discretization of the C1 continuity constraint and B2

2 is the
contribution of slave nodes (II) in the discretization of the C0 continuity constraint. Under the row-wise permutation
matrix Pr, B1

1 and B2
2 become identity submatrices. Under a rank-preserving transformation T we can eliminate the

submatrix B2
1 such that

TBp =

[
I B3

1−B2
1B3

2 0
B3

2 0

]
. (96)

We may now take

B⊥p =



B2
1B3

2−B3
1 0

−B3
2 0

I



. (97)

The vector basis of the null space of B can now be obtained from

B⊥ = PcB⊥p . (98)

Examples of basis functions, represented by vectors of B⊥, are shown in Figure 14.

Figure 14: Two exemplary basis functions in the constrained spaceVh for fourth-order problems.

The sparsity patterns for the stiffness matrices corresponding to the two-patch biharmonic problem using the global
dual basis, the Bézier dual basis and the enriched Bézier dual basis are shown in Figure 15. The sparsity patterns for
biharmonic problem are similar to that of the Poisson problem for all three types of dual basis functions.

8 Numerical examples
In this section, we investigate the performance of the enriched dual basis for several challenging second- and fourth-

order benchmarks. Results obtained from the enriched Bézier dual basis are denoted by Enrich-Qi . The performance
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(a) (b) (c)

Figure 15: Stiffness matrix sparsity patterns for the coupled linear system using (a) global dual basis, (b) Bézier dual
basis, and (c) enriched Bézier dual basis for the biharmonic problem. The stiffness matrices are computed from the
two-patch domain in Figure 13 after three levels of refinements.

of the enriched dual basis is compared with the global dual basis (L2-Qi) and the Bézier dual basis (Bézier-Qi). For
all second order problems, the polynomial reproduction degree q is set to p− 1 for the pth-order enriched dual basis.
For all fourth-order problems, the polynomial reproduction degree q is set to p−2 for the pth-order enriched dual basis.
These choices of degrees ensure the sparsest possible stiffness matrix while also maintaining optimality. The enriched
dual bases are constructed with Algorithm 4.

In the context of second-order problems, we solve two benchmarks. The first benchmark is a Poisson problem over
a four-patch square domain, where the intersections are all parameterized differently. In the second benchmark, we
model an infinite plate with a hole using four non-conforming NURBS patches.

In the context of fourth-order problems, we solve three benchmarks. The first benchmark is a biharmonic problem
over a five-patch square domain. A simply supported square Kirchhoff-Love plate is the second benchmark. In the last
benchmark we consider the Cahn-Hilliard equation.

All numerical problems are solved using the Eigen library [30]. A conjugate gradient solver is used for all problems
except in the case of the Cahn-Hilliard problemwhere the BiCGSTAB solver is used to handle the asymmetric consistent
tangent matrix.

8.1 The Poisson problem
We start by solving the Poisson equation −∆u = f over the domain [0,1]× [0,1]. The domain is decomposed into

four patches as shown in Figure 16a. A manufactured solution is given as

u(x, y) = sin(2πx) sin(2πy). (99)

This manufactured solution satisfies the homogeneous Dirichlet boundary condition (u = 0) and is shown in Figure 16b.
Convergence plots in both the L2 and H1 norms are shown in Figure 17. We achieve optimal convergence for the

enriched Bézier dual basis for all tested polynomial degrees (p = 2,3, . . .,5) in both norms. For p = 2,3, the error in the
enriched dual basis is close to that of the global dual basis, whereas uniform shifts are observed for p= 4,5. We speculate
that the cause of these vertical shifts in the convergence curves is due to the non-matching parameterizations along
each intersection. Since the enriched Bézier dual basis functions have a larger support size, the size of a corresponding
extension element Ω̂e for the enriched dual basis will be significantly larger than that of the standard B-spline basis. As
a result, the local approximation error of the enriched dual basis will be larger than that of the standard B-spline basis.
The higher degree non-matching parameterizations seem to aggravate this error. However, regardless of the slight shift,
the optimal convergence rates have been observed in both measures. The Bézier dual basis, as expected, demonstrates
sub-optimal convergence in both the L2 and H1 norms for p = 3,4,5. In addition, in the asymptotic regime, the error
increases as the polynomial degree is increased.
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(a) A four-patch mesh where all intersections have both mis-
matched parameterizations and non-conforming meshes.

(b) A manufactured solution.

Figure 16: The multi-patch mesh of the domain Ω = [0,1]× [0,1] and the manufactured solution that satisfies u = 0 on
∂Ω, which are utilized for the problem described in Section 8.1.

Error plots for the cubic mesh after three global uniform refinements are shown in Figure 18. The plot of the error
in the solution computed with the enriched Bézier dual basis is similar to that computed with the global dual basis,
except for small spikes in the neighborhood of vertices. On the other hand, a significant amount of oscillatory error can
be observed for the Bézier dual basis along each intersection. Notice that the error in the interior domain is similar in
all cases.

8.2 Linear elasticity – infinite plate with a hole
We next consider a linear elasticity problem. The problem setup and multi-patch domain are shown in Figure 19.

The traction along the outer edge is set to the exact solution

σrr (r, θ) =
Tx

2
(1−

R2
1

r2 )+
Tx

2
(1−4

R2
1

r2 +3
R4

1
r4 ) cos(2θ),

σθθ (r, θ) =
Tx

2
(1+

R2
1

r2 )−
Tx

2
(1+3

R4
1

r4 ) cos(2θ),

σrθ (r, θ) = −
Tx

2
(1+2

R2
1

r2 −3
R4

1
r4 ) sin(2θ).

(100)

The relative error of the displacement u are measured in both the L2 norm and energy semi-norm

‖u−uh ‖E :=
∑
k

∫
Ωk

1
2
σ(u−uh) : ε (u−uh)dΩ. (101)

Convergence plots for both norms are shown in Figure 20. Similar to the scalar Poisson problem, both the enriched
Bézier and global dual basis converge optimally for all polynomial degrees in both norms. In addition, due to the absence
of non-matching parameterizations along each intersection, the convergence plots of the enriched Bézier dual basis are
all identical to that of the global dual basis. The convergence plots of the Bézier dual basis are again sub-optimal.

Error plots for p = 3 after three uniform global mesh refinements are shown in Figure 21. The error plots for both
the enriched and global dual basis are the same. The error in the Bézier dual basis, however, is highly oscillatory along
each intersection. Again, the in-domain errors are similar for all methods which confirms that the main contribution to
the sub-optimal behavior is the consistency error.
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Figure 17: Convergence plots for the problem described in Section 8.1. On the left, error measured in the L2 norm. On
the right, error measured in the H1 norm.

Enrich-Q3 Bézier -Q3

L2-Q3

Figure 18: Error plots for the Poisson problem on a four-patch domain (p = 3, three uniform mesh refinements).
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(a) Infinite plate with a hole subject
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(b) The problem setup. (c) The non-conforming four-patch
mesh.

Figure 19: The infinite plate with a hole problem.
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Figure 20: Convergence plots for the problem described in Section 8.2. On the left, the error measured in the L2 norm.
On the right, the error measured in the energy semi-norm.
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Figure 21: Error plots for the linear elasticity problem on a four-patch domain (p = 3, three uniform mesh refinements).
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8.3 The biharmonic problem
We consider a homogeneous biharmonic problem over the domain [0,1]× [0,1] and a manufactured solution

u(x, y) = sin(2πx)2 sin(2πy)2. (102)

The problem setup is shown in Figure 22.

(a) A non-conforming five-patch mesh. (b) A manufactured solution.

Figure 22: The biharmonic problem setup.

Error convergence plots for the biharmonic problem are shown in Figure 23. The enriched Bézier dual basis with
q = p− 2 produces optimal results for p = 2,3,4 and the convergence plots are identical to those produced by the
global dual basis. Note that the optimal convergence rate for quadratic basis functions is O(h2) in the L2 norm for
biharmonic problems. For the p = 5 case, we observe sub-optimal convergence for both the enriched and global dual
basis and the most highly refined mesh in the L2 norm. However, no sub-optimality is observed for the H2 norm. This
behavior indicates that the error occurs at certain digits of the floating point vector Umortar (between the 7th and 10th
digits for this case). We infer that the cause of this error is the poor conditioning of the stiffness matrix. In addition,
previous studies [46] show that the growth rate of the condition number for the biharmonic problem is O(−h4), which
is huge when compared with O(−h2) for the Poisson problem. This explains why the ill-conditioning of the biharmonic
problem occurs much earlier than for the Poisson problem. We also attribute the slightly better performance of the
enriched Bézier dual basis to their compact support and the robust construction algorithm (Algorithm 4). Again, the
Bézier dual basis leads to sub-optimal behavior for higher-order elements.

Error plots for the cubic mesh after two uniform refinements are shown in Figure 24. Similar to second-order
problems, the error plot for the enriched dual basis is identical to that of the global dual basis due to the absence of
mismatched parameterizations along each intersection.

8.4 A Kirchhoff plate
The bending moments of a Kirchhoff plate are given by:

Mxx = −D
(
∂2w

∂x2 + ν
∂2w

∂y2

)
,

Myy = −D
(
∂2w

∂y2 + ν
∂2w

∂x2

)
,

Mxy = −D(1− ν)
∂2w

∂xy
,

(103)

31



10−1.5 10−1 10−0.5

10−10

10−8

10−6

10−4

10−2

100

1
6

1
5

1
4

1
2

h

‖
u
−

uh
‖
L

2
/‖

u‖
L

2

Enrich-Q2 Enrich-Q3 Enrich-Q4 Enrich-Q5
Bézier-Q2 Bézier-Q3 Bézier-Q4 Bézier-Q5

L2-Q2 L2-Q3 L2-Q4 L2-Q5

10−1.5 10−1 10−0.5

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

1
4

1
3

1
2

1
1

h

‖
u
−

uh
‖
H

2
/‖

u‖
H

2

Enrich-Q2 Enrich-Q3 Enrich-Q4 Enrich-Q5
Bézier-Q2 Bézier-Q3 Bézier-Q4 Bézier-Q5

L2-Q2 L2-Q3 L2-Q4 L2-Q5

Figure 23: Convergence plots for the problem described in Section 8.3. On the left, the error measured in the L2 norm.
On the right, the error measured in the H2 norm.

where w is the vertical displacement, D = Et3

12(1−ν2) , t is the thickness, E is the Young’s modulus and ν is the Poisson’s
ratio. The governing equation of a Kirchhoff plate can be derived as

∂4w

∂x4 +
∂4w

∂x2y2 +
∂4w

∂y4 =
q
D

(104)

where q is the pressure. In this benchmark, we consider a square plate with L = 12 subjected to a sinusoidal presure
load of

q(x, y) = −sin(
πx
L

) sin(
πy

L
). (105)

We also adopt t = 0.375, E = 4.8×105 and ν = 0.38. The analytical solution is given by

w(x, y) = −
L4

4Dπ4 sin(
πx
L

) sin(
πy

L
). (106)

The geometry, discretization and the analytical solution of vertical displacement are shown in Figure 25. Note that
the green intersection has a non-matching parameterization, whereas the red curves are coupled in a non-comforming
fashion.

Convergence behaviors of w, Mxx and Mxy are studied in Figure 26. As can be seen, both the enriched Bézier
dual basis and the global dual basis yield optimal results for all polynomial orders in all three measures. As for the
biharmonic problem, ill-conditioning for the last refinement of p = 5 is observed in the L2 norm whereas convergences
of errors in Mxx and Mxy are still optimal. Due to the presence of a non-matching parameterized intersection, vertical
shifts in the error plots of the enriched Bézier dual basis have been observed for higher order elements (p = 4,5). Again,
the Bézier dual basis generates sub-optimal results.

Error plots of err= ux −uhx for the simply supported Kirchhoff plate problem are given in Figure 27. For the enriched
Bézier dual basis and the global dual basis, no oscillation are observed on the curved intersecitons, however, errors
evolve along the non-matching parameterized intersection. Additionally, the influence of the non-matching intersection
is more significant for the enriched Bézier dual basis. For the case of the Bézier dual basis, the consistency error is
much higher and propagates into all patches.

8.5 The Cahn-Hilliard equation
In this benchmark, we verify the robustness of the dual mortar method and the enriched Bézier dual basis on a

fourth-order non-linear dynamic problem – the Cahn-Hilliard equation. The Cahn-Hilliard equation was originally
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Figure 24: Error plots for the biharmonic problem on a five-patch domain (p = 3, two uniform mesh refinements).

derived to model the spinodal decomposition of binary mixtures. Taking the concentration u of one of the mixture’s
components as a phase-field parameter, the governing equation over an infinite domain can be stated as

∂u
∂t
= ∇ · (M (u)∇ (µ(u)− λ∆u)) in Ω× [0,T],

u(x,0) = u0(x) in Ω
(107)

where M (u) is the mobility, µ(u) represents the chemical potential of a regular solution in the absence of phase
interfaces and λ is a positive constant such that

√
λ represents the length scale of the problem. In this benchmark, we

study the concentration distribution over a two-dimensional domain with different initial and boundary conditions. We
consider

M (u) = Du(1−u), (108)

µ(u) = 3α
(

1
2θ

log
u

1−u
+1−2u

)
, (109)

and adopt the following values: α = 3000, D = 1, λ = 1 and θ = 1.5. The weak form is stated as follows: find u ∈ U
such that ∀v ∈ V

〈
∂u
∂t
,v〉Ω+ 〈M (u)∇µ(u)+∇M (u)∆u,∇v〉Ω+ 〈M (u)∆u,∆v〉Ω = 0, (110)

whereU andV are suitable function spaces.
To achieve an optimal ratio of high-frequency and low-frequency dissipation, we adopt the first-order generalized-α

method [17, 36] as the temporal discretization scheme. In each time step, we require that the nonlinear residual
decreases to 10−4 of its initial value. For the sake of computational efficiency, we adopt the adaptive time stepping
scheme introduced by Gómez et al. in [28]. This adaptive time stepping scheme takes advantage of the fact that the
generalized-α method contains the backward Euler method as a special case, and use the relative error between the
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(a) Non-matching parameterized non-conforming three-
patch mesh

(b) The reference solution

Figure 25: The decomposition and discretization of the domain [0,1]×[0,1] and the reference solution that satisfies u = 0
on ∂Ω in Section 8.4. The non-matching parameterized interface is denoted by the green curve and the non-conforming
interfaces are denoted by red curves.

solution from generalized-α method and the solution from the backward Euler method as an estimator of the current
step size.

8.5.1 Stochastic concentration distribution

We first consider an initially stochastic concentration distribution over an infinite two-dimensional domain, as:

u0(x) = ū+ r (x), (111)

where ū = 0.63 and r is a random variable with uniform distribution in the range [−0.005,0.005]. The infinite domain
can be described by a square domain Ω = [0,1]× [0,1] with periodic boundary conditions. Hence, for this case, bothU
andV are in H2(Ω) and satisfy periodic boundary condition. Taking into account that periodic boundary conditions are
applied, it is anticipated that in the steady state only one circular inclusion will remain. To demonstrate the robustness
of the dual mortar method and the enriched Bézier dual basis, we non-uniformly discretize the domain Ω into 64×64
quadratic elements, the periodic boundary condition is applied through the dual mortar method.

The mesh and the structural evolution of the concentration distribution are shown in Figure 28. Note that both the
top/bottom and the left/right interfaces are non-matching parameterized. As can be seen, from its initial stochastic
pattern, the concentration distribution evolves into two phases whose composition is determined by the minima of
the bulk free energy. The process is dominated by the reduction of the number of u = 0 phases. Meanwhile, the
characteristic length of the u = 0 phase is increased. Finally, the circular shape of the single inclusion is formed as a
result of the bulk free energy minimization.

8.5.2 Linear concentration distribution

In the second case, we do not take ū as a constant, but we vary it linearly with the horizontal spatial coordinate
from 0.1 to 0.9. The domain Ω = [0,2]× [0,2] is decomposed into four patches that are coupled non-conformingly. In
addition, to show the compatibility of the coupling method with other types of boundary conditions, we consider

∂u
∂n
= 0, on ∂Ω. (112)

The mesh and the structural evolution of the concentration distribution are shown in Figure 29. Four patches are
discretized into 63×63, 65×65, 65×65 and 63×63 cubic elements, correspondingly. In this case, three morphologies
are formed in different regions of the domain. On the left-hand side of the domain, the red phase nucleates into the blue
one. The exact opposite occurs on the right-hand side. In the middle, where u ≈ 0.5, we observe the striped pattern
typical from spinodal decomposition. Whereas the nucleation process is dominated in the middle region, the structural
evolution at the boundaries x = 0 and x = 2 hardly exists. Eventually, the interface develops into a straight line at x = 1,
which is consistent with the behavior of the exact solution.
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Figure 26: Convergence plots for the simply supported Kirchhoff plate in Section 8.4. Upper left: error of w measured
in the L2 norm. Upper right: error of Mxx measured in the L2 norm. Bottom: error of Mxy measured in the L2 norm.

In both cases, the convergence of Newton’s method is achieved within 3 interations when ∆t < 5× 10−6 and 4
interations when 5× 10−6 ≤ ∆t < 1× 10−4 for both the generalized-α method and the backward Euler method. This
is the same as for a simulation performed on one uniformly discretized patch. In addition, no influence on the time
step size of the adaptive time stepping scheme has been observed. This confirms that the dual mortar method with the
enriched Bézier dual basis does not negatively impact the convergence behavior of the residual correction loop and the
overall robust performance when solving nonlinear problems.
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Figure 27: Error plots of err = ux −uhx for the simply supported Kirchhoff plate problem on a three-patch domain (p = 3,
two uniform mesh refinements).
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The distorted mesh t = 0.000002 t = 0.000007

t = 0.000015 t = 0.000040 t = 0.000082

t = 0.000156 t = 0.002136 Steady state

Figure 28: Temporal evolution of an initially stochastic concentration distribution into phases of different composition.
The periodic boundary conditions are applied by the dual mortar method with the enriched Bézier dual basis. The
computational domain is non-uniformly discretized, mesh lines at ξ = 0.5 and η = 0.5 are highlighted.

37



65× 65 63× 63

63× 63 65× 65

The non-conforming four-patch mesh t = 0.000002 t = 0.000004

t = 0.000010 t = 0.000048 t = 0.000204

t = 0.001304 t = 0.005814 Steady state

Figure 29: Temporal evolution of an initially linear concentration distribution with stochastic perturbation into two
phases separated by a straight interface. The four-patch domain are coupled by the dual mortar method with the enriched
Bézier dual basis.
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9 Conclusion
In this paper, we develop an enrichment procedure to endow Bézier dual basis functions with optimal approximation

power and deverlop dual mortar methods to solve second- and fourth-order problems. The cause of suboptimal
convergence of the Bézier dual basis is due to the lack of polynomial reproduction. The enriched Bézier dual basis can
reproduce polynomials up to a given degree at the expense of a slightly enlarged support. Owing to the locality of the
dual basis, the linear system after static condensation remains sparse. The proposed enrichment approach is based on
the formulation in Oswald et al. [51] with three significant improvements: (1) our approach is quadrature-free, (2) the
conditioning is independent of the mesh size, and (3) it is posed in terms of Bézier extraction and projection. Hence,
the assembly cost is minimized and overall solution robustness is improved.

In the context of fourth-order dual mortar formulations, we develop a parameterization-independent dual mortar
suitable C1 constraint that allows the biorthogonality between the dual basis functions and the corresponding primal
spline basis functions to be extended to the discretized C1 constraint matrix. Hence, the condensed stiffness matrix
remains sparse if the dual basis functions are compactly supported.

The performance of the enriched dual basis is demonstrated through several challenging benchmark problems
including second-order, fourth-order, linear, nonlinear, static and dynamic problems. The proposed dual basis demon-
strates optimal convergence and yields compelling results, especially when compared to global and standard Bézier
dual basis functions.

Finally, although the proposed enrichment procedure overcomes the suboptimality of the Bézier dual basis at the
expense of a slightly enlarged support, in [44], Lamichhane developed dual basis functions that have the same support
size as the nodal finite element basis functions and reproduce polynomials of degree p− 1. Hence, we believe there
exists a superior formulation for smooth splines that can achieve the same performance without any influence on the
support size.
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