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We demonstrate the use of Bézier projection to alleviate locking phenomena in structural mechanics
applications of isogeometric analysis. We call this method Bézier B projection. To demonstrate the
utility of the approach for both geometry and material locking phenomena we focus on transverse shear
locking in Timoshenko beams and volumetric locking in nearly compressible linear elasticity although the
approach can be applied generally to other types of locking phenemona as well. Bézier projection is a
local projection technique with optimal approximation properties, which in many cases produces solutions
that are comparable to global L? projection. In the context of B methods, the use of Bézier projection
produces sparse stiffness matrices with only a slight increase in bandwidth when compared to standard
displacement-based methods. Of particular importance is that the approach is applicable to any spline
representation that can be written in Bézier form like NURBS, T-splines, LR-splines, etc. We discuss in
detail how to integrate this approach into an existing finite element framework with minimal disruption
through the use of Bézier extraction operators and a newly introduced dual Bézier extraction operator.
We then demonstrate the behavior of the approach through several challenging benchmark problems.
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1 Introduction

Isogeometric analysis (IGA), introduced by Hughes et al. [1], adopts the spline basis, which underlies the
CAD geometry, as the basis for analysis. Of particular importance is the positive impact of smoothness on
numerical solutions, where, in many application domains, IGA outperforms classical finite elements [2-7]. Initial
investigations of IGA focused on Non-uniform rational B-splines (NURBS) due to their dominance in commercial
CAD packages. However, many advances are being made in analysis-suitable geometry representations that
overcome the strict rectangular topological restrictions of NURBS. Examples include T-splines [6,8] and their
analysis-suitable restriction [9,10], hierarchical B-splines [11-15], and locally refined B-splines [16,17] among
others.

The purpose of this paper is to demonstrate how Bézier projection [18] can be employed as the underlying
local projection framework for a B approach to treat locking in isogeometric structural elements. Bézier pro-
jection is an element-based local projection methodology for B-splines, NURBS, and T-splines. It relies on the
concept of Bézier extraction [19,20] and an associated operation, spline reconstruction, which enables the use
of Bézier projection in standard finite element codes.

Bézier projection exhibits provably optimal convergence and yields projections that are virtually indistin-
guishable from global L? projection. For an isogeometric finite element code that leverages Bézier extraction,
Bézier projection can be employed virtually for free. To simplify the implementation of the Bézier B method in
existing finite element codes we develop a dual element Bézier extraction operator that can be derived directly
from the Bézier extraction of a spline representation. It is worth noting that Bézier projection can also be used
to develop a unified framework for spline operations including cell subdivision and merging, degree elevation
and reduction, basis roughening and smoothing, and spline reparameterization and is applicable to any spline
representation that can be written in Bézier form.

Numerical locking in structural finite elements manifests itself as geometric locking in thin curved structural
members and includes membrane and shear locking and as volumetric locking in incompressible and nearly
incompressible elasticity. There is an immense literature on approaches to overcome locking in the finite element
community and various approaches have emerged as dominant. These include reduced quadrature [21,22], B
projection methods [23,24], and mixed methods based on the Hu-Washizu variational principle [25-27]. It is
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important to mention that, although ameliorated at high polynomial degrees, smooth splines in the context of
IGA still exhibit locking behavior [28,29)].

In IGA, there is a growing literature on the treatment of locking in structural elements. Leveraging higher-
order smoothness, transverse shear locking can be eliminated at the theoretical level by employing Kirchhoff-
Love [30,31] and hierarchic Reissner-Mindlin [32-34] shell elements. Reduced quadrature schemes have been
explored in [35-37] as a way to alleviate transverse shear locking. The extension of B projection to the isoge-
ometric setting was initiated in [38] for both elastic and plastic problems and was extended in [39] to include
local projection techniques [40,41].

The outline of this paper is as follows: First, we briefly review spline basis functions in Section 2. In Sections 3
and 4, we describe Bézier extraction and projection. We then formulate and use Bézier B projection for the
Timoshenko beam (to treat transverse shear locking) and nearly incompressible elasticity (to treat volumetric
locking) in Sections 5 and 6, respectively. We provide detailed element level operations in both settings. We
also presents numerical tests to show the performance of the proposed strategy. We then conclude in Section 7.

2 Preliminaries and notation

In this section a brief overview of univariate Bernstein, B-spline, and NURBS basis functions is provided.
We also describe how these univariate basis functions are extended to higher dimensions.

2.1 Univariate Bernstein basis functions

The ith univariate Bernstein basis function of degree p is defined by
_ [P\ n—i
Bin(©) = (7)€ -0 (1)

p!

where 5 S [O, 1] and (Z;) = m,

0 < i < p, is a binomial coefficient.

2.2 Univariate spline basis functions

A univariate B-spline basis of dimension n is defined by a polynomial degree p and a knot vector E =
{&0.&1, ... €ntp), which is a non-decreasing sequence of real numbers. The Ath B-spline basis function can
then be defined using the Cox-de Boor recursion formula:

1 €4 <E<8am
0 otherwise

Nao(§) = { (2)
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For simplicity, we will always use open knot vectors defined over the interval [0,1]. An open knot vector
satisfies the conditions {y =& = -+ =& =0 and &, = {41 = -+ = Engp = 1 and creates interpolatory end
conditions. B-spline basis functions can be used to represent piecewise polynomial functions but are not capable
of representing conic sections (e.g. circles, ellipses and hyperbolas). NURBS overcome this shortcoming. A
NURBS basis function can be written as

_ NA,p(g)wA

Rapll) = 25— 4
where w4 is called a weight and
W(€) = Nap©wa (5)
A
is called the weight function. A d dimensional rational curve S(¢) € RY can then be defined as
S(&) =) Rap(§Pa (6)
A
where P4 = (pYy,p?%, ..., pj)T is a d-dimensional control point. It is often more convenient to represent the d-
dimensional NURBS in a (d+1)-dimensional homogeneous space by defining P4 = (pywa, piwa, ..., phwa,wa)”
and the corresponding (d + 1)-dimensional B-spline curve as
S"(€) =D Nap(&)PY (7)
A
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Figure 1: Illustration of Bézier extraction and projection in one dimension for a B-spline of degree 2 and knot
vector [0,0,0,1/3/2/3,1,1,1] (restricted to the second element for illustrative purposes).

such that each component of S¥ can be written as

Si(€) =

S (€)

In the homogeneous form, NURBS can be manipulated by standard B-spline algorithms.

2.3 Multivariate spline basis functions

In higher dimensions, Bernstein, B-spline, and NURBS basis functions are formed by the Kronecker product
of univariate basis functions. For example, two-dimensional B-spline basis functions of degree p = (pe¢, p,,) are
defined by

NP (¢, ) = NP(§) @ NP7 () (9)

where NP¢(€) and NP7 (7)) are vectors of basis functions in the £ and 7 directions, respectively. A particular
multivariate basis function can be written as

NE (€)= N ()N (1) (10)
where the index mapping is defined as
A(i,7) = nyi + j. (11)
3 Bézier extraction
Given a spline basis N there exists a Bernstein basis B and a linear operator C (see [19]) such that
N(¢) = CB(¢). (12)

The localization of C to an element domain produces the element extraction operator C¢. Given control points
P¢, the corresponding Bézier control points Q¢ can be computed directly as

Q° = (C)TP-. (13)

A graphical depiction of Bézier extraction is shown in Figure 1.

4 Bézier projection

Bézier projection can be viewed as the inverse of extraction [18]. Bézier projection uses an element recon-
struction operator R¢ = (C¢)~! such that the global control point values, corresponding to those basis functions
defined over the support of an element e, can be determined directly from Bézier control values as

P = (R9)7Q° (14)



where Q€ is any field in Bézier form. The action of the element reconstruction operator is depicted graphically
in Figure 1. For example, given any function v € L?, we can compute Q¢ as

Q° = (G)'F° (15)
where G¢ is the Gramian matrix corresponding to the Bernstein basis with components
Gy = /Q BB dQ) = (B;, Bj)q- (16)
and

EFf = / BfudQ = (B{ ,u)qe. (17)
Note that efficiency gains can be had at the expense of accuracy by instead performing the integration in the
parametric domain of the element [18].

Since a global spline basis function N4 corresponding to a control point P4 may span multiple elements
multiple values may be associated with that control point. A weighted average is taken of these values using
the weighting
o JoNed2
“ Joa Nage,a) A2

where Q¢ corresponds to the physical domain of element e, A(e,a) is a mapping from a local nodal index a
defined over element e to a corresponding global node index A, and Q4 corresponds to the physical support of
N 4. The final averaged global control point is then calculated as

w

(18)

Py = Z O‘)A(E,G)PA(E,G)' (19)
QeeqA

Bézier projection onto NURBS functions can be defined in an analogous manner [18].

The individual steps comprising the Bézier projection algorithm are illustrated in Figure 3 where the curve
defined by f(t) = (%)3/2 er + % sin(nt) eq, t € [0, 3] is projected onto the quadratic B-spline basis defined by
the knot vector [0,0,0,1/3,2/3,1,1,1]. For this example, the algorithm proceeds as follows:

Step 1: The function f is projected onto the Bernstein basis of each element. This results in a set of Bézier
coefficients that define an approximation to f. The Bézier coefficients are indicated in part (1) of Figure 3
by square markers that have been colored to match the corresponding element. Each Bézier segment is
discontinuous.

Step 2: The element reconstruction operator R¢ is used to convert the Bézier control points into spline
control points associated with the basis function segments over each element. The new control points are
marked with inverted triangles and again colored to indicate the element with which the control point is
associated. The control points occur in clusters. The clusters of control points represent the contributions
from multiple elements to a single spline basis function control point.

Step 3: Each cluster of control points is averaged to obtain a single control point by weighting each point in
the cluster according to the weighting given in (18). The resulting control points are shown as circles with
the relative contribution from each element to each control point indicated by the colored fraction of the
control point marker. e colors in Figures 2 and 3 are coordinated to illustrate where the averaging weights
come from and their values.

4.1 Dual basis formulation of Bézier projection

To integrate Bézier projection into a standard finite element assembly algorithm, it is convenient to recast
Bézier projection in terms of a dual basis. A dual basis has the distinguishing property that

/ NaNp d = Sap. (20)
Q

Once a dual basis is defined it can be processed in much the same manner as standard basis functions are
processed in a finite element code. A complete exposition on the subject of dual bases and the Bézier projection
framework can be found in [18]. We first define the dual element extraction operator

D¢ = diag(w®)R¢(G) ! (21)
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Figure 2: Weights over each knot span associated with the basis function defined by the knot vector
[0,0,0,1/3,2/3,1,1,1].

where G is the Gramian matrix of the Bernstein basis functions over the element and diag(w®) is a diagonal
matrix that contains the Bézier projection weights computed by (18). We can then define a dual basis function
N g(e,a) restricted to element e as

N =Y D;B;. (22)
J
The biorthogonality of the dual basis can be seen by noting that

N¢(N9)T dQ = diag(w®) (23)
Qe

and

A [ Ne(Ne)T dﬂ} —1 (24)
e Qe
where A is the standard finite element assembly operator [42].

Now, given any function u € L? we can use the dual basis to find its representation in terms of the
corresponding spline basis as

UZZPANA (25)
A

where

PA = NAudQ = <NA,U>QA. (26)
QA

A set of dual basis functions corresponding to the quadratic maximally smooth B-spline basis shown in Figure 4a
is shown in Figure 4c. Note that these dual functions have compact support and discontinuities which coincide
with the underlying knots in the knot vector. The compact support of the dual basis functions will be crucial
for maintaining the sparsity of the stiffness matrix for the Bézier B formulations presented in this paper. For
comparison, the dual basis corresponding to global L? projection are shown in Figure 4b. Each of these dual
basis functions has global support which explains why the use of global B projections results in dense stiffness
matrices.
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Figure 3: Steps of Bézier projection.

4.1.1 Rational dual basis functions

If rational basis functions are used, the construction of the dual basis must be modified slightly. A rational
dual basis must satisfy the biorthogonality requirement

/RARBdﬂzaAB. (27)
Q
A simple way to achieve biorthogonality is to define

Ry =WNy (28)

where W is the rational weight given in (5). Now

/ RaRpdQ = / NaNp d = dap. (29)
Q Q

5 Geometric locking: Timoshenko beams

To illustrate the use of Bézier B projection to overcome geometric locking effects we study transverse shear
locking in Timoshenko beams. The Timoshenko beam problem provides a simple one dimensional setting in
which to describe Bézier B projection. Note, however, that the approach can be directly generalized to more
complex settings like spatial beams and shells and other geometric locking mechanisms like membrane locking.
We consider a planar cantilevered Timoshenko beam as shown in Figure 5. The strong form for this problem
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Figure 4: A set of quadratic B-spline basis functions (a), and corresponding dual basis functions computed by
a global L? projection (b) and the dual basis functions computed using Bézier projection (c). Not that the
support of the dual basis functions in (b) is not compact. The dual basis functions shown in (c¢) have compact
support but are not continuous.

can be stated as

—sGAY = f(x)
—EIK —sGAy =0
m e in 0 (30)
k=q
/
Y=w —¢
=0
Z_O}a‘uxo (31)
AGr =
SEIV ]6\24} at z =L (32)
_BlIk—

where ~y is the shear strain,  is the bending strain, w is the vertical displacement, ¢ is the angle of rotation
of the normal to the mid-plane of the beam, f is the distributed transverse load, @ is a point load, M is the
moment, F is the Young’s modulus, G is the shear modulus, A is the cross-sectional area, I is the second
moment of inertia of the beam cross-section, s is the shear correction factor, normally set to 5/6 for rectangular
cross-sections, and © = (0,L). When w and ¢ are interpolated by basis functions of the same order the finite
element solution to this problem exhibits shear locking as the beam becomes slender.

Figure 5: Deformation of a Timoshenko beam. The normal rotates by the angle ¢, which is not equal to w’,
due to shear deformation.

5.1 The weak form

Given the function spaces S(Q) = {u|u e H'(Q),ulp, = g} and V() = {w|w € H'(Q),w|pr, = 0} where
u = {w, ¢}T, w = {dw, 5(/§}T, g is the prescribed Dirichlet boundary condition, and I'y is the Dirichlet boundary
at = 0, the weak form of the problem can be stated as: find u € §(Q2) such that for all w € V(Q2)

alw,u)g = l(w)g (33)



where
L
a{w,u)q = / k(W)EIjk(u) + 5(w)sGAY(u) dx (34)
0
L
Uw)g = / dwfdx + ow(L)Q + d¢(L)M (35)
0
and 7 is the projected shear strain.

5.2 Discretization

We discretize u and w as
u = Z UANA (36)
A

w=> W4N,4 (37)
A

where U = {wa,d4}7 and W4 = {6wa,dpa}T and Ny is a degree p spline basis function. The shear strain 7
is constructed by Bézier projecting the true shear strain v into a lower degree space. In other words, we project
from a pth degree spline space with n basis functions IN defined by the knot vector

g, ={0,0,...,0,Zin, 1,1,...,1}, (38)
p + 1 copies p + 1 copies

onto a p — 1 degree spline space with 7 basis functions N defined by the knot vector

E,-1=1{0,0,...,0,E;,1,1,...,1} (39)
—— —
p copies p copies

where the internal knots, denoted by =;,;, are the same for both spaces. The projected shear strain 4 can then
be written as

3= 7aNa. (40)
A
The control variables 74 are simply

ya= | NaydQ = (Na,v)ai (41)
Q

where N 4 is a dual basis function for the degree p — 1 spline space computed from (22).
Localizing to the Bézier element we define the strain-displacement arrays in terms of element Bernstein basis
functions of degree p and p — 1 as

Bf=[0 -B§ -+ 0 —-B], (42)
B} =[BS' -B; --- By -Bj], (43)
B.=[B5 -+ Bf,]. (44)

We can then compute the element arrays as

K! = EIC*(B:", Bf)(C)", (45)
M. = sGAC*(B! B.)(C*)", (46)
P = (N°)7,B)(C)", (47)

where C¢ is the element extraction operator for the degree p spline space, C¢ is the element extraction operator

for the degree p — 1 spline space, and N¢ are the dual basis functions restricted to the element for the degree
p — 1 spline space. The global stiffness matrix can then be written as

K=K"+K* (48)



where
k= Ak, (49)
K® = PTMP (50)
p-Ap, (51)
M= Anr, (52)

and A is the standard finite element assembly operator [42]. We note that the assembly of K® requires the
assembly of two intermediate matrices, M and P. The computation of these matrices is needed because the
product of two integrals over the entire domain can not be localized to the element level.

5.3 Bandwidth of the stiffness matrix

A global B method that utilizes a global L? projection results in a dense stiffness matrix. The Bézier B
method, on the other hand, produces a sparse stiffness matrix. However, the coupling of the local dual basis
functions does increase the bandwidth slightly. This is illustrated in Figure 6, which shows the structure of the
stiffness matrix for the Timoshenko beam problem using the second order basis functions of maximal smoothness
for a displacement-based method (Figure 6a), global B method (Figure 6b), and Bézier B method (Figure 6c).
The blank cells indicate zero terms in the matrix while colored cells show the location of nonzero terms.

(a) Standard (b) Global B (c) Bézier B

Figure 6: Illustrations of the structure of 274 order Timoshenko beam stiffness matrices for (a) a standard
displacement method, (b) a global B method, and (c) a Bézier B method.

The increased bandwidth of the Bézier B method when compared to a displacement-based method can be
explained by looking at the product of the integrals in (50). For example, if we consider the basis functions Ny
and Ny in Figure 7 we see that supp(N1) N supp(N5) = (), which means that the inner product of these two
functions will be zero and the corresponding coefficient in the stiffness matrix will be zero in the displacement-
based method. For the Bézier B method, however, the form of (50) leads to a coupling between N; and Ns.
This can be seen by considering Q5. Over this element, the shear stiffness can be represented as

3 3
K;=> > P/M,P, (53)

i=1 j=1

and the term of this summation that results in the coupling between N; and N is PTMyP3, where P; is
the inner product of Ni and Ny, Pj is the inner product of Ny and N3, and My is the inner product of
Ny and N3. We can see from Figure 7 that supp(N;) N supp(No) = €y, supp(Ns) N supp(N3) = Q3 and
supp(N2) N supp(N3) = €, so that PTM,P3 is not zero. Thus we have increased the number of nonzero
coefficients in the shear stiffness matrix. However, the same exercise can be used to show that there is no
coupling between Ny and Ny for this set of basis functions so matrix is not dense. In fact, from the formulation
of the element stiffness matrix, we can show that the bandwidth of the stiffness matrix of the Bézier B method
for the Timoshenko beam is 6p — 3.

Remark In [39] a local B method for shells was proposed that was based on the local least squares method
presented in [41]. This approach has a similar structure to the method presented here. However, it was shown
in [18] that choosing (18) as the weighting provides a significant increase in the accuracy of the approximation.
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Figure 7: Quadratic maximally smooth B-spline basis functions (top), associated linear basis functions (middle),
and dual basis functions (bottom) for the Bézier B formulation.

5.4 Numerical results

In our study, a straight planar cantilever beam is clamped on the left end and a sinusoidal distributed load
x
f(z) = sin(7=) is applied, as depicted in Figure 8. The analytical solution for vertical displacement w, rotation

¢, bending moment M, and transverse shear force @ are given by

B EI (67r2l2 sin (%) + 67T3lx) + sGA (6l4 sin (%) — 673z + 3m3122% — 71'31363)

w(@ 6misEIGA
213 cos (”T) — 213 + 27212 — 72la?
d(x) = 3
2m3 BT
12 sin (”—"’”) —7l? + 7wz (54)
M) =
—lcos (%) —1
Q) = %

gz

f(z)

Figure 8: Straight planar cantilevered Timoshenko beam clamped at the left and loaded by a distributed load
f(@).

The beam has a rectangular cross-section and we use the following non-dimensional sectional and material
parameters: length I = 10, width b = 1, thickness ¢ = 0.01, Young’s modulus E = 10°, Poisson’s ratio v = 0.3,
and a shear correction factor of s = 5/6. A comparison of the normalized error in the L? norm for w, ¢,
M and @ versus the number of degrees of freedom for polynomial degrees p = 1,2,3 is shown in Figure 9.
Results computed using standard finite elements are labeled @1, @2, and Q3. Results computed using a global
B method are labeled TX” and those computed with the Bézier B method are labeled 7F. As expected, the
@1 results lock and the error remains virtually unchanged as the mesh is refined. Increasing the polynomial
degree does reduce the locking effect, although the reduction is minor for the Q5 results. Both TE* and TP are
essentially locking free for all polynomlal orders. The convergence rates for the B methods are at least p + 1

10
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Figure 9: Convergence studies for slenderness factor [/t = 1073, Error in the L?-norm for (a) displacement w,
(b) rotation ¢, (c¢) bending moment M, and (d) shear force Q.

for w, p for ¢, p—1 for M, and p — 2 for Q. These rates agree with those reported in [43] and are optimal. To
reiterate, Bézier B method produces the same convergence rates as the global B method.

We have also studied the relationship between shear locking and decreasing slenderness ratios for p = 2.
The results are shown in Figure 10. For all three methods, the number of degrees of freedom are fixed, and the
sectional and material parameters are the same as in the previous study. The slenderness ratio varies from 10
to 5 x 10%. Q locks severely. The B methods, on the other hand, are locking free.

6 Volumetric locking: Nearly incompressible linear elasticity

To demonstrate the use of Bézier B method to alleviate volumetric locking effects we study the nearly
incompressible elasticity problem in two dimensions. We start with the small strain tensor €, which is defined

as the symmetric part of the displacement gradient, i.e.,
Wi 5 + Ujg
€ij = % (55)

The stress tensor is related to the strain tensor through the generalized Hooke’s law
Oij = Cijki€k (56)

where, for isotropic elasticity, the elastic coefficients and stress tensor can be expressed in terms of the Lamé
parameters A and p as

Cijkt = p(0ikdj1 + 0:105k) + A0k (57)
055 = /\akkéij + 2M€ij~ (58)
The Lamé parameters A and p are defined in terms of Young’s modulus, F, and Poisson’s ratio, v, as
vE

N

(I+v)(1-2v) (59)
vE

bt (60)

11
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we can write the strong form of linear elasticity as

04, +fi=01in Q (61)
u; = g; on 'y, (62)
051y = hz on th‘ (63)

where Dirichlet boundary conditions are applied on I'y,, Neumann boundary conditions are applied on I'y,;, and

_ 1
the closure of the domain Qis @ = QUI'y, UTy,. If v — 3 then A becomes very large and standard finite

element methods exhibit volumetric locking.

6.1 The weak form

The B approach for nearly incompressible linear elasticity splits the strain tensor ¢ into volumetric and
deviatoric strains and then replaces the volumetric strain with a projected strain. We begin with

e(u) = " (u) + €% (u) (64)

dev

1 1
where %! = gtr(e)I is the volumetric strain and %V = e — gtr(s)l is the deviatoric strain. The volumetric

vol

strain is then replaced by a projected volumetric strain €"** and the new total strain becomes

g = é7:1)ol + E‘:dev- (65)

The weak form can then be written as: find u € S(2) such that for all w € V()

where
alw, u) = / 1y (W) (0)d9 (67)
Q

(68)

=

|
S~

[

n

QU

o)

+
g\

=1

=

QU

=

6.2 Discretization

Following the same approach as was described for Timoshenko beams in Section 5 we define element level
strain-displacement matrices in terms of the Bernstein basis

rOB§ 0B¢ T
To’p 0 0 P 0 0
T oBg T aBe
0 —£ 0 0 —r 0
dy Jy
0B§ OB¢
0 0 —r 0 0 — B
B, = ; 7 e 7|, 69
, 9B, 05, . 9By o, (69)
. 0z 8% . 0z 8%
0B, 0 oB§, oBs , 0 oB; ,
7 . Oz 7 e Oz
oBg, 058§, 0 8@1,71, B, , 0
L Oy oz dy ox J
roBs, 08§, 0B, oB;, 0B;, 0B,
ox y 0z Jz dy 0z
oBs, 0B, 0bB§, oB,, 0B,, 0B,
1] .0 Jy 0z oz dy 0z
B! = 3 oBs, 0B;, 0B§, oB;, 0B,, 0B;, (70)
ox dy 0z or oy 0z
0 0 0 0 0 0
0 0 0 0 0 0
L O 0 0 0 0 0 |
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and
B =B, - B (71)

The deviatoric part of the element stiffness matrix can then be computed from the corresponding strain-
displacement matrices as

K = C*(B{ DB{)(C*)T (72)

where C*€ is the element extraction operator for the degree p spline space. The volumetric part of the stiffness
matrix is computed using Bezier projection. The intermediate element matrices are

My = C*(B!,DB.)(C*)" (73)
Py = (N9)7, By (C)” (74)

where C°¢ is the element extraction operator for the degree p — 1 spline space, N¢ are the dual basis functions
restriced to the element, and

B§ -1 0 0 By 1,1 0 0
0 B§ -1 0 0 By 1,21 0
= 0 0 B§ -1 0 0 By 151
B. = 0 0 0 0 0 0 (75)
0 0 0 0 0 0
0 0 0 0 0 0
The global stiffness matrix can then be assembled as
K= Kdev + Kvol (76)
where
K = Ak, (77)
K" = PTMP (78)
p-Apw (79)
M = A e, (80)

€

6.3 Numerical results

We investigate the performance of the Bézier B method for two nearly incompressible linear elasticity
problems under plane strain conditions. We first study the Cook’s membrane problem, which is discretized with
B-spline basis functions, and in the second problem we model the infinite plate with a circular hole problem using
NURBS. Results computed using standard finite elements are labeled Q1, @2, Q3, and Q4. Results computed
using a global B method are labeled TL* and those computed with the Bézier B method are labeled 7.

6.3.1 Cook’s membrane problem

This benchmark problem is a standard test for combined bending and shearing response. The geometry,
boundary conditions, and material properties are shown in Figure 11. The left boundary of the tapered panel
is clamped, the top and bottom edges are free with zero traction boundary conditions, and the right boundary
is subjected to a uniformly distributed traction load in the y-direction as shown. The meshes used are shown
in Figure 12.

A comparison of the displacement of the top right corner with respect to the number of elements per side
is shown in Figure 13. @7 locks and mesh refinement has little impact. Locking is somewhat reduced for the
higher-order elements @, p > 1. The B methods perform very well for all degrees.
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T =100N

Figure 11: Geometry, boundary conditions, and material properties for the Cook’s membrane problem.

Figure 12: Sequence of meshes for Cook’s membrane problem.
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Figure 13: Cook’s membrane: comparison of the vertical displacement at the top right corner for the different
methods and degrees.
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6.3.2 Infinite plate with a circular hole

The setup for the infinite plate with a circular hole problem is shown in Figure 14. The traction along the
outer edge is evaluated from the exact solution which is given by

Ty R} T, R? R}
orr(r,0) = 5 (1= —3) + 5 (1 —4—5 +3-7)cos(20)
T, R? T, R}
oge(r,0) = ?(1 + 7"72) - 7(1 + 3r—4)cos(29) (81)
T, R R}, .
org(r,0) = —7(1 + 27“7 - SF)sm(QG).
O Xg cy
L~
N
~
N
«— —>
. %
A v = 0.4999999
«— _ s . 1
= 1mm
= 4mm
«— —>
) ) ) ) ()
<« —
(a) Infinite plate with a hole subjected to uniaxial tension at (b) A representation of the computational model.
T = Fo0.

Figure 14: Geometry, boundary conditions, and material properties for the infinite plate with a hole.

The geometry of the quarter annulus can be exactly represented using a biquadratic NURBS basis. The
knot vector for the coarsest discretization is given by

Z¢ x B, = {0,0,0,1,1,1} x {0,0,0,1,1,1} (82)

and the corresponding weights and control points associated with each basis function are given in Table 1
and 2. For higher-order elements and finer discretizations the weights and corresponding control points are
identified by an order elevation and knot insertion algorithm, respectively. The Bézier mesh representation for
the discretizations are shown in Figure 15.

Convergence plots for the relative error of the displacement and energy in the L? norm are shown in Figure
16. As can be seen, the standard (), approximations suffer from severe volumetric locking for all orders while,
on the other hand, the projection methods remedy locking for all cases. For biquadratic elements, the Bézier B

9
5
9
9%

XD
SRR
S

)
A7
AT
o

5
>
5%
%%

i

&
S
R
%
“ &

5
8t

1
i
T

Figure 15: Sequence of meshes for infinite plate with a circular hole problem.
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Table 1: Weights for the plate with a circular hole

i w; 1 W; 2 w; 3
1 1 1/v2 1
2 1 1/v2 1
3 1 1/vV2 1

Table 2: Control points for the plate with a circular hole

i B; 1 B; 2 B;3
1 (0,1) (1,1) (1,0)
2 (0,2.5) (2.5,2.5) (2.5,0)
3 (0,4) (4,4) (4,0)

method obtains optimal convergence rates for both the displacement and energy error, and the difference in the
energy error between the global B and the Bézier B methods is indistinguishable. For bicubic and biquartic
elements, the convergence rates of the Bézier B method for the energy error are optimal. The convergence rates
of Bézier B method for the displacement error, however, are not optimal. This degradation in the rates can
likely be attributed to the conditioning of the Bernstein basis and the element extraction operators.
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Figure 16: Convergence study of the plate with a circular hole. The relative L? error of displacement and energy
with respect to mesh refinement.

7 Conclusions

We have presented the Bézier B method as an approach to overcome locking phenomena in structural
mechanics applications of isogeometric analysis. The approach utilizes Bézier extraction and projection which
makes it simple to implement in an existing finite element framework and makes it applicable to any spline
representation which can be written in Bzier form. In contrast to global B methods, which produce dense
stiffness matrices, the Bézier B approach results in a sparse stiffness matrix while still benefiting from higher-
order convergence rates.

We have demonstrated the performance of the approach in the context of shear deformable beams (to alleviate
transverse shear locking) and nearly incompressible elasticity problems (to alleviate volumetric locking). The
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proposed method reduces locking errors and achieves (nearly) optimal convergence rates. The cases where
optimal rates were not achieved warrant further study.
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